Model-based segmentation of spatial cylindrical data

被引:10
|
作者
Lagona, Francesco [1 ]
Picone, Marco [2 ]
机构
[1] Univ Roma Tre, Dept Polit Studies, Rome, Italy
[2] Inst Environm Protect & Res, Rome, Italy
关键词
Abe-Ley density; Adriatic sea; cylindrical data; EM algorithm; hidden Markov randomfield; marine currents; mean-field approximation; SPACE;
D O I
10.1080/00949655.2015.1122791
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new hidden Markov random field model is proposed for the analysis of cylindrical spatial series, i.e. bivariate spatial series of intensities and angles. It allows us to segment cylindrical spatial series according to a finite number of latent classes that represent the conditional distributions of the data under specific environmental conditions. The model parsimoniously accommodates circular-linear correlation, multimodality, skewness and spatial autocorrelation. A numerically tractable expectation-maximization algorithm is provided to compute parameter estimates by exploiting a mean-field approximation of the complete-data log-likelihood function. These methods are illustrated on a case study of marine currents in the Adriatic sea.
引用
收藏
页码:2598 / 2610
页数:13
相关论文
共 50 条
  • [1] Spatial data model-based on GML technology
    Yang Jian-Hong
    Gong Xiao-Yang
    2012 INTERNATIONAL CONFERENCE ON INTELLIGENCE SCIENCE AND INFORMATION ENGINEERING, 2012, 20 : 240 - 243
  • [2] Model-based Segmentation of Pathological Lymph Nodes in CT Data
    Dornheim, Lars
    Dornheim, Jana
    Roessling, Ivo
    Moench, Tobias
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [3] Model-based segmentation of nuclei
    Cong, G
    Parvin, B
    PATTERN RECOGNITION, 2000, 33 (08) : 1383 - 1393
  • [4] Model-based texture segmentation
    Haindl, M
    Mikes, S
    IMAGE ANALYSIS AND RECOGNITION, PT 2, PROCEEDINGS, 2004, 3212 : 306 - 313
  • [5] Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images
    Montagnat, J
    Sermesant, M
    Delingette, H
    Malandain, G
    Ayache, N
    PATTERN RECOGNITION LETTERS, 2003, 24 (4-5) : 815 - 828
  • [6] Classification of biomedical data through model-based spatial averaging
    Marsolo, K
    Twa, M
    BIBE 2005: 5th IEEE Symposium on Bioinformatics and Bioengineering, 2005, : 49 - 56
  • [7] A model-based approach for analysis of spatial structure in genetic data
    Yang, Wen-Yun
    Novembre, John
    Eskin, Eleazar
    Halperin, Eran
    NATURE GENETICS, 2012, 44 (06) : 725 - U163
  • [8] A model-based approach for analysis of spatial structure in genetic data
    Wen-Yun Yang
    John Novembre
    Eleazar Eskin
    Eran Halperin
    Nature Genetics, 2012, 44 : 725 - 731
  • [9] Model-based segmentation of multimodal images
    Hong, Xin
    McClean, Sally
    Scotney, Bryan
    Morrow, Philip
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 604 - 611
  • [10] Model-based segmentation of hand radiographs
    Weiler, F
    Vogelsang, F
    MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 : 673 - 682