Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine

被引:3
|
作者
Hastings, Florencia [1 ,2 ]
Fuentes, Ignacio [3 ]
Perez-Bidegain, Mario [1 ]
Navas, Rafael [4 ]
Gorgoglione, Angela [5 ]
机构
[1] Univ Republica, Sch Agron, Av Gral Eugenio Garzon 780, Montevideo, Uruguay
[2] Minist Agr Livestock & Fisheries, Directorate Nat Resources, Av Gral Eugenio Garzon 456, Montevideo, Uruguay
[3] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[4] Inst Nacl Invest Agr, Programa Nacl Invest Prod & Sustentabilidad Ambie, Montevideo, Uruguay
[5] Univ Republica, Sch Engn, Julio Herrera y Reissig 565, Montevideo, Uruguay
关键词
Land-cover map; Supervised classification; Google earth engine; Agricultural region; CLASSIFICATION; CROPLAND;
D O I
10.1007/978-3-030-58811-3_52
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land-cover mapping is critically needed in land-use planning and policy making. Compared to other techniques, Google Earth Engine (GEE) offers a free cloud of satellite information and high computation capabilities. In this context, this article examines machine learning with GEE for land-cover mapping. For this purpose, a five-phase procedure is applied: (1) imagery selection and pre-processing, (2) selection of the classes and training samples, (3) classification process, (4) post-classification, and (5) validation. The study region is located in the San Salvador basin (Uruguay), which is under agricultural intensification. As a result, the 1990 land-cover map of the San Salvador basin is produced. The new map shows good agreements with past agriculture census and reveals the transformation of grassland to cropland in the period 1990-2018.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [21] Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India
    Loukika, Kotapati Narayana
    Keesara, Venkata Reddy
    Sridhar, Venkataramana
    SUSTAINABILITY, 2021, 13 (24)
  • [22] Sunflower mapping using machine learning algorithm in Google Earth Engine platform
    Kumar, Amit
    Singh, Dharmendra
    Kumar, Sunil
    Chauhan, Nitin
    Singh, Sultan
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (12)
  • [23] Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine
    Edwin Pizarro, Samuel
    Gabriela Pricope, Narcisa
    Vargas-Machuca, Daniella
    Huanca, Olwer
    Naupari, Javier
    REMOTE SENSING, 2022, 14 (07)
  • [24] Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine
    Pech-May, Fernando
    Aquino-Santos, Raul
    Rios-Toledo, German
    Posadas-Duran, Juan Pablo Francisco
    SENSORS, 2022, 22 (13)
  • [25] Machine learning-based improved land cover classification using Google Earth Engine: case of Atakum, Samsun
    Ayalke, Zelalem Getachew
    Sisman, Aziz
    GEOMATIK, 2024, 9 (03): : 375 - 390
  • [26] A NEW APPROACH FOR MAPPING LAND USE / LAND COVER USING GOOGLE EARTH ENGINE: A COMPARISON OF COMPOSITION IMAGES
    Sellami, El Mehdi
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 343 - 349
  • [27] Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine
    Huang, Huabing
    Chen, Yanlei
    Clinton, Nicholas
    Wang, Jie
    Wang, Xiaoyi
    Liu, Caixia
    Gong, Peng
    Yang, Jun
    Bai, Yuqi
    Zheng, Yaomin
    Zhu, Zhiliang
    REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 166 - 176
  • [28] Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine
    Farda, N. M.
    5TH GEOINFORMATION SCIENCE SYMPOSIUM 2017 (GSS 2017), 2017, 98
  • [29] Global relative ecosystem service budget mapping using the Google Earth Engine and land cover datasets
    Tao Liu
    Li, Zhigang
    Le Yu
    Xin Chen
    Cao, Bowen
    Li, Xiyu
    Du Zhenrong
    Peng, Dailiang
    Hou, Langong
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2022, 4 (06):
  • [30] Mapping built-up land & settlements: A comparison of machine learning algorithms in Google Earth Engine
    Rudiastuti, Aninda Wisaksanti
    Farda, Nur Mohammad
    Ramdani, Dadan
    SEVENTH GEOINFORMATION SCIENCE SYMPOSIUM 2021, 2021, 12082