Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions

被引:43
|
作者
Tung, Le Thanh [1 ]
机构
[1] Can Tho Univ, Dept Math, Coll Nat Sci, Can Tho 900000, Vietnam
关键词
Multiobjective convex semi-infinite programming; Interval-valued objective functions; Karush-Kuhn-Tucker optimality conditions; Mond-Weir duality; Wolfe duality; OPTIMIZATION PROBLEMS;
D O I
10.1007/s12190-019-01274-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush-Kuhn-Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond-Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some examples are provided to illustrate the advantages of our results in some cases.
引用
收藏
页码:67 / 91
页数:25
相关论文
共 50 条
  • [31] Karush-Kuhn-Tucker optimality conditions and duality for set optimization problems with mixed constraints
    Tung L.T.
    Khai T.T.
    Hung P.T.
    Ngoc P.L.B.
    Journal of Applied and Numerical Optimization, 2019, 1 (03): : 277 - 291
  • [32] Karush-Kuhn-Tucker conditions and duality for a class of convex adjustable robust optimization problem
    Tung, Nguyen Minh
    Van Duy, Mai
    Dai, Le Xuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [33] A note on the paper "Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming"
    Gadhi, Nazih Abderrazzak
    Ichatouhane, Aissam
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (01) : 13 - 22
  • [34] The Karush-Kuhn-Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems
    Agarwal, Deepika
    Singh, Pitam
    El Sayed, M. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 : 861 - 877
  • [35] ON NONDIFFERENTIABLE SEMI-INFINITE MULTIOBJECTIVE PROGRAMMING WITH INTERVAL-VALUED FUNCTIONS
    Antczak, T. A. D. E. U. S. Z.
    Farajzadeh, A. L., I
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (08) : 5816 - 5841
  • [36] Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization
    Zhu, S. K.
    Li, S. J.
    Teo, K. L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (04) : 673 - 692
  • [37] On robust Karush-Kuhn-Tucker multipliers rules for semi-infinite multiobjective optimization with data uncertainty
    Tung, Nguyen Minh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02):
  • [38] Optimality conditions and duality theorems for nonsmooth semi-infinite interval-valued mathematical programs with vanishing constraints
    Van Su, Tran
    Hang, Dinh Dieu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [39] Optimality conditions and duality theorems for nonsmooth semi-infinite interval-valued mathematical programs with vanishing constraints
    Tran Van Su
    Dinh Dieu Hang
    Computational and Applied Mathematics, 2022, 41
  • [40] On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming
    Phan Quoc Khanh
    Nguyen Minh Tung
    Optimization Letters, 2020, 14 : 2055 - 2072