Classification of Methamorphic Malware with Deep Learning(LSTM)

被引:14
|
作者
Yaz, Ahmet Faruk [1 ]
Catak, Ferhat Ozgur [2 ]
Gul, Ensar [1 ]
机构
[1] Istanbul Sehir Univ, Bilgi Guvenligi Muhendisligi, Istanbul, Turkey
[2] TUBITAK, BILGEM, Kocaeli, Turkey
关键词
Metamorphic malware; Windows API; deep learning; LSTM;
D O I
10.1109/siu.2019.8806571
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nowadays, anti-virus applications using traditional signature-based detection methods fail to detect metamorphic malware. For this reason, recent studies on the detection and classification of malicious software address the behavior of malware. In this study, an LSTM based classification method was developed by using API calls of 8 different types of real malware. With this method, the behaviors of the malware types on the operating system are modeled.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] LSTM Based Behavior Classification Deep Learning Algorithm Using EEG
    Park, Sang-Uk
    Han, Ji-Hoon
    Hong, Sun-Ki
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (12): : 1924 - 1933
  • [42] IoT Malware Network Traffic Classification using Visual Representation and Deep Learning
    Bendiab, Gueltoum
    Shiaeles, Stavros
    Alruban, Abdulrahman
    Kolokotronis, Nicholas
    PROCEEDINGS OF THE 2020 6TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2020): BRIDGING THE GAP BETWEEN AI AND NETWORK SOFTWARIZATION, 2020, : 444 - 449
  • [43] DeepMDFC: A deep learning based android malware detection and family classification method
    Sharma, Sandeep
    Ahlawat, Prachi
    Khanna, Kavita
    SECURITY AND PRIVACY, 2024, 7 (02)
  • [44] Android malware classification using convolutional neural network and LSTM
    Soodeh Hosseini
    Ali Emamali Nezhad
    Hossein Seilani
    Journal of Computer Virology and Hacking Techniques, 2021, 17 : 307 - 318
  • [45] Android malware classification using convolutional neural network and LSTM
    Hosseini, Soodeh
    Nezhad, Ali Emamali
    Seilani, Hossein
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) : 307 - 318
  • [46] Byte-level malware classification based on markov images and deep learning
    Yuan, Baoguo
    Wang, Junfeng
    Liu, Dong
    Guo, Wen
    Wu, Peng
    Bao, Xuhua
    COMPUTERS & SECURITY, 2020, 92
  • [47] Deriving Optimal Deep Learning Models for Image-based Malware Classification
    Mitsuhashi, Rikima
    Shinagawa, Takahiro
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1727 - 1729
  • [48] An optimal deep learning-based framework for the detection and classification of android malware
    Bose, S. Jebin
    Kalaiselvi, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9297 - 9310
  • [49] A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
    Bovenzi, Giampaolo
    Cerasuolo, Francesco
    Montieri, Antonio
    Nascita, Alfredo
    Persico, Valerio
    Pescape, Antonio
    2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
  • [50] Shallow Deep Learning using Space-filling Curves for Malware Classification
    Long, David
    O'Shaughnessy, Stephen
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2022), 2022, : 145 - 154