Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as thermal storage medium

被引:0
|
作者
Park, SJ
Kim, KS
Hong, SK
机构
[1] Korea Res Inst Chem Technol, Adv Mat Div, Taejon 305600, South Korea
[2] Chungnam Natl Univ, Taejon 305764, South Korea
关键词
miniemulsion polymerization; polystyrene; cosurfactant; Ostwald ripening; freeze-thaw cycle;
D O I
暂无
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polystyrene (PS) particles containing the phase change material (PCM) were synthesized by miniemulsion polymerization. The polymer particles prepared with different parameters were investigated in terms of average particle size, particle distribution, and latent heat storage of encapsulated paraffin wax (PW) as PCM. The morphology and particle features of PS particles were analyzed by scanning electron microscope and particle size analyzer, respectively. As a result, the diameters of PS particles were adjusted with manufacturing conditions. The stable and spherical PS particles of nanosize were obtained by miniemulsion polymerization, which could be attributed to the prevention of Ostwald ripening by cosurfactant. Thermal properties of PS particle containing PCM were studied by differential scanning calorimetry. From DSC freeze-thaw cycle, PCM coated with PS exhibited the thermal energy storage and release behaviors, and the latent heat was found to be a maximum 145 J/g. It was noted that PS particles containing PCM showed a good potential as a thermal energy storage medium.
引用
收藏
页码:8 / 13
页数:6
相关论文
共 50 条
  • [21] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
    Lin, Yaxue
    Jia, Yuting
    Alva, Guruprasad
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2730 - 2742
  • [22] Synthesis and properties of microencapsulated phase change materials for thermal energy storage materials
    Konuklu, Yeliz
    Paksoy, Halime O.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 206 - 209
  • [23] A study on preparation and properties of carbon materials/myristic acid composite phase change thermal energy storage materials
    He, Meizhi
    Yang, Luwei
    Zhang, Zhentao
    Yang, Junling
    PHASE TRANSITIONS, 2019, 92 (07) : 615 - 633
  • [24] Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials
    Fang, Yutang
    Yu, Huimin
    Wan, Weijun
    Gao, Xuenong
    Zhang, Zhengguo
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 430 - 436
  • [25] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [26] Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage
    He, Meizhi
    Yang, Luwei
    Lin, Wenye
    Chen, Jiaxiang
    Mao, Xiang
    Ma, Zhenjun
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [27] Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage
    Long Gao
    Xuegeng Sun
    Baizhong Sun
    Deyong Che
    Shaohua Li
    Zhongze Liu
    Journal of Thermal Analysis and Calorimetry, 2020, 141 : 25 - 35
  • [28] Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage
    Gao Long
    Sun Xuegeng
    Sun Baizhong
    Che Deyong
    Li Shaohua
    Liu Zhongze
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (01) : 25 - 35
  • [29] Study on thermal properties of phase change cool storage composite materials
    Fang, GY
    Li, H
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER ENHANCEMENT AND ENERGY CONSERVATION, VOLS 1 AND 2, 2004, : 381 - 386
  • [30] Nanocapsules containing salt hydrate phase change materials for thermal energy storage
    Graham, Michael
    Shchukina, Elena
    De Castro, Paula Felix
    Shchukin, Dmitry
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) : 16906 - 16912