A printability study for phase-shift masks at 193nm lithography

被引:0
|
作者
Philipsen, V [1 ]
Jonckheere, R [1 ]
机构
[1] IMEC VZW, B-3001 Louvain, Belgium
关键词
defect printability; mask 2D quality; 193nm lithography; attenuated phase-shift mask;
D O I
10.1117/12.514964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the mask quality printability for 6% attenuated phase-shift masks (PSM) using 193nm lithography. It is part of a systematic assessment of the impact of mask defects on the printed image. Our previous work [1-3] focused on defect printability of binary masks. Furthermore, an attenuated PSM is also used to print contact holes (CH), as it improves the process latitudes. In this paper we focus on the 2D quality of the CH on the mask. Due to mask-writer effects, the ideally square CH becomes rounded on the mask. The 2D mask quality determines the printed image, together with the exposure conditions and wafer stack. In a first section the influence of programmed mask defects on a 6% attenuated PSM is evaluated. The 100nm gatestyle design is based on the Defect Sensitivity Monitor (DSM of ASML MaskTools). We consider two different degrees of optical proximity correction (OPC), i.e., no OPC, and both serifs and scatter bars (SB). The mask contains programmed soft defects made from resist dots to mimic opaque defects such as bumps and spots. The wafers are exposed on an ASML PAS5500/950 scanner with 193nm conventional illumination (0.7sigma) using a numerical aperture (NA) of 0.63. The printing results are compared to aerial image simulations taking into account the actual mask contours. A comparison table, which classifies the defect based on the induced linewidth deviation, is drawn from it. The second section deals with 2D quality of CH on a 6% attenuated PSM. The design contains CH of various sizes and in various pitches. The CH are provided with serifs on the corners, thereby varying size and placement. These serifs are intended as a correction to the design to incorporate possible mask-writer-generated rounding of the ideally square CH. The purpose of this study is to evaluate the influence of such serifs in the design towards wafer printing. The wafers are exposed on an ASML PAS5500/1100 scanner with 193nm conventional illumination (0.6sigma) using a NA of 0.7. The accuracy of the aerial image simulation is examined using the experimental printability data.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [21] Extension Options for 193nm Immersion Lithography
    Zimmerman, Paul A.
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2009, 22 (05) : 625 - 634
  • [22] Resist challenges for 193nm lithography.
    Bowden, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U427 - U427
  • [23] Antireflective coating strategies for 193nm lithography
    Stephen, A
    Dean, K
    Byers, J
    MICROLITHOGRAPHY 1999: ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XVI, PTS 1 AND 2, 1999, 3678 : 1315 - 1322
  • [24] Implications of immersion lithography on 193nm photoresists
    Taylor, JC
    Chambers, CR
    Deschner, R
    LeSuer, RJ
    Conley, W
    Burns, SD
    Willson, CG
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXI, PTS 1 AND 2, 2004, 5376 : 34 - 43
  • [25] Development of fluoropolymer for 193nm immersion lithography
    Shirota, Naoko
    Takebe, Yoko
    Sasaki, Takashi
    Yokokoji, Osamu
    Toriumi, Minoru
    Masuhara, Hiroshi
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U773 - U782
  • [26] Effects of reticle birefringence on 193nm lithography
    Light, Scott
    Tsyba, Irina
    Petz, Christopher
    Baluswamy, Pary
    Rolfson, Brett
    OPTICAL MICROLITHOGRAPHY XX, PTS 1-3, 2007, 6520
  • [27] Progress in 193nm immersion lithography at IMEC
    Ronse, K
    Vandenberghe, G
    Hendrickx, E
    Leunissen, LHA
    Aksenov, Y
    EMLC 2005: 21st European Mask and Lithography Conference, 2005, 5835 : 6 - 12
  • [28] Immersion lithography fluids for high NA 193nm lithography
    Zhou, JM
    Fan, YF
    Bourov, A
    Lafferty, N
    Cropanese, F
    Zavyalova, L
    Estroff, A
    Smith, BW
    Optical Microlithography XVIII, Pts 1-3, 2005, 5754 : 630 - 637
  • [29] 248nm and 193nm lithography for damascene patterning
    Maenhoudt, M
    Pollentier, I
    Wiaux, V
    Vangoidsenhoven, D
    Ronse, K
    SOLID STATE TECHNOLOGY, 2001, 44 (04) : S15 - +
  • [30] CrOxFy as a material for attenuated phase-shift masks in ArF lithography
    Nakazawa, K
    Matsuo, T
    Onodera, T
    Morimoto, H
    Mohri, H
    Hatsuta, C
    Hayashi, N
    PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY VII, 2000, 4066 : 682 - 687