A Hierarchically Nanostructured Composite of MoO3-NiO/Graphene for High-Performance Lithium-Ion Batteries

被引:2
|
作者
Teng, Yongqiang [1 ]
Liu, Hao [1 ,2 ]
Liu, Dandan [1 ,2 ]
Chen, Yongchong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Energy Storage Technol Res Grp, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
energy storage and conversion; nanocomposites; citric-assisted method; MoO3; NiO; carbon materials; ANODE MATERIAL; NANOSHEETS; MICROSPHERES;
D O I
10.1115/1.4048492
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Bicomponent transition metal oxide (TMO) anodes have attracted increased attention for the application in high-performance lithium-ion batteries (LIBs). In this work, MoO3-NiO/graphene (MNG) composite was fabricated by one-pot method. Results showed that ultrafine MoO3 nanosheets and NiO nanoparticles were homogeneously anchored on the graphene layers, which is benefit for short Li+ diffusion distance, fast reaction kinetics, and low volume expansion. The as-prepared MNG composite exhibited remarkable electrochemical properties as lithium-ion battery anodes with high specific capacities of 1164 mAh/g at 100 mA/g after 50 cycles and 946.9 mAh/g at 1000 mA/g after 180 cycles. This work indicates that the MNG composite would be a promising anode material for high-performance LIBs.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries
    Liu, Huan
    Wang, Xinlu
    Xu, Hang
    Yu, Wensheng
    Dong, Xiangting
    Yang, Ying
    Zhang, Hongbo
    Wang, Jinxian
    DALTON TRANSACTIONS, 2017, 46 (33) : 11031 - 11036
  • [22] Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries
    Zheng, Mingbo
    Tang, Hao
    Li, Lulu
    Hu, Qin
    Zhang, Li
    Xue, Huaiguo
    Pang, Huan
    ADVANCED SCIENCE, 2018, 5 (03)
  • [23] A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries
    Huang, Xiaodan
    Zhou, Xufeng
    Qian, Kun
    Zhao, Dongyuan
    Liu, Zhaoping
    Yu, Chengzhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 514 : 76 - 80
  • [24] A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries
    Zhang, Qiang
    Yang, Yuying
    Wang, Dong
    Zhang, Rui
    Fan, Huiqing
    Feng, Liu
    Wen, Guangwu
    Qin, Lu-Chang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 944
  • [25] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [26] Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries
    Md. Arafat Rahman
    Cuie Wen
    Ionics, 2015, 21 : 2709 - 2723
  • [27] Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries
    Rahman, Md. Arafat
    Wen, Cuie
    IONICS, 2015, 21 (10) : 2709 - 2723
  • [28] Hierarchically Multiporous Carbon Nanotube/Co3O4 Composite as an Anode Material for High-Performance Lithium-Ion Batteries
    Li, Xiao
    Tian, Xiaodong
    Yang, Tao
    Song, Yan
    Liu, Zhanjun
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (54) : 14477 - 14483
  • [29] Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries
    Danping Sun
    Zhi Tan
    Xuzheng Tian
    Fei Ke
    Yale Wu
    Jin Zhang
    Nano Research, 2021, 14 : 4370 - 4385
  • [30] Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries
    Wang, Xiongwei
    Zhang, Ludan
    Zhang, Zehui
    Yu, Aishui
    Wu, Peiyi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (05) : 3893 - 3899