OVERVIEW OF MAIN-MECHANICAL-COMPONENTS AND CRITICAL MANUFACTURING ASPECTS OF THE WENDELSTEIN 7-X CRYOSTAT

被引:0
|
作者
Koppe, Torsten [1 ]
Cardella, A. [1 ]
Missal, B. [1 ]
Hein, B. [1 ]
Krause, R. [1 ]
Jenzsch, H. [1 ,2 ]
Reich, Jens
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany
[2] ITER Org, Durance, France
来源
2011 IEEE/NPSS 24TH SYMPOSIUM ON FUSION ENGINEERING (SOFE) | 2011年
关键词
Wendelstein; 7-X; Cryostat; Plasma Vessel; Outer Vessel; Coil Support Structure; Ports;
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Wendelstein 7-X (W7-X) will demonstrate the possibility of a stellarator for a future fusion power plant. This stellarator fusion experiment is at present in the assembly phase at the Max-Planck-Institut fur Plasmaphysik (IPP). The main advance of the static plasma is caused by the three dimensional shape of the coils. But inside the Cryostat this extravagant geometry of the coils efforts also a three dimensional contour of the main mechanical components. One of the ambitious challenges is how to build up such complex machine. The manufacturing of these complex devices have been demanded the newest manufacturing methods. At 2014 Wendelstein 7-X will be the world's largest superconducting helical advanced stellarator. The toroidal plasma vessel geometry follows exactly the three dimensional shape of the plasma. It contains the plasma with a great diameter of 11m and an average plasma diameter of 1.1 m. To control the plasma geometry it is necessary that all the 20 planar and 50 non planar coils are not only extreme narrow positioned to the Plasma Vessel but also within a tolerance of 1.5 mm to each other. To meet this requirement and to withstand the high magnetic forces a complex coil support structure was created. The Central Support Ring have to bear the coils but the different inter coil supports canalize the forces by very stiff connections on one side and sliding areas on the other side. The coils and the support structure are enclosed within the Outer Vessel with its domes and openings. The Outer Vessel, the Plasma Vessel and the ports generate the boundaries for the Cryostat. The vacuum inside provides thermal insulation of the magnet system which is cooled down to 4 K. The 254 ports secure the access to the Plasma Vessel with all the supply lines and the diagnostics. Due to the different thermal movements the Plasma Vessel, Outer Vessel and the Central Support Ring have to be supported separately. The Central Support Ring is held by 10 cryo legs. The Plasma Vessel supporting system is divided into two separate systems, allowing horizontal and vertical adjustments to centre the Plasma Vessel during thermal expansion. Beside an overview about the main components in the cryostat like the plasma vessel, the outer vessel, the ports and the different support systems this paper describes the most demanding manufacturing methods. The author delineates some disparate and special problems during the manufacturing of the components at the companies in the different European countries.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Design & manufacturing of cooled immersion tubes for divertor bolometry in Wendelstein 7-X
    Ruhnau, Jacob
    von Sehren, Christoph
    Reimold, Felix
    Broszat, Torsten
    Laube, Ralph
    FUSION ENGINEERING AND DESIGN, 2023, 194
  • [42] Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment
    Risse, K.
    Rummel, Th
    Freundt, S.
    Dudek, A.
    Renard, S.
    Bykov, V.
    Koeppen, M.
    Langish, S.
    Neilson, G. H.
    Brown, Th
    Chrzanowski, J.
    Mardenfeld, M.
    Malinowski, F.
    Khodak, A.
    Zhao, X.
    Eksaa, G.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1518 - 1522
  • [43] Preparation of erosion and deposition investigations on plasma facing components in Wendelstein 7-X
    Dhard, C. P.
    Balden, M.
    Braeuer, T.
    Brezinsek, S.
    Coenen, J. W.
    Dudek, A.
    Ehrke, G.
    Hathiramani, D.
    Klose, S.
    Koenig, R.
    Laux, M.
    Linsmeier, Ch
    Manhard, A.
    Masuzaki, S.
    Mayer, M.
    Motojima, G.
    Naujoks, D.
    Neu, R.
    Neubauer, O.
    Rack, M.
    Ruset, C.
    Schwarz-Selinger, T.
    Pedersen, T. Sunn
    Tokitani, M.
    Unterberg, B.
    Yajima, M.
    PHYSICA SCRIPTA, 2017, T170
  • [44] Overview of core impurity transport in the first divertor operation of Wendelstein 7-X
    Wegner, Th
    Baehner, J. -P.
    Buttenschoen, B.
    Langenberg, A.
    von Stechow, A.
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (03)
  • [45] LCF assessment on heat shield components of nuclear fusion experiment "Wendelstein 7-X" by critical plane criteria
    Giannella, V.
    Citarella, R.
    Fellinger, J.
    Esposito, R.
    AIAS2017 - 46TH CONFERENCE ON STRESS ANALYSIS AND MECHANICAL ENGINEERING DESIGN, 2018, 8 : 318 - 331
  • [46] Design aspects of the joints for the bus bar system of the Wendelstein 7-X stellarator
    Czymek, G.
    Giesen, B.
    Harberts, R.
    Panin, A.
    Lennartz, M.
    Reisgen, U.
    Schuster, W.
    Wolters, J.
    Rummel, K.
    Czerwinski, M.
    Lentz, H.
    Ebner, M.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) : 1467 - 1472
  • [47] Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components
    Grulke, O.
    Albert, C.
    Belloso, J. A. Alcuson
    Aleynikov, P.
    Aleynikova, K.
    Alonso, A.
    Anda, G.
    Andreeva, T.
    Arvanitou, M.
    Ascasibar, E.
    Aymerich, E.
    Avramidis, K.
    Baehner, J. -P.
    Baek, S. -G.
    Balden, M.
    Baldzuhn, J.
    Ballinger, S.
    Banduch, M.
    Bannmann, S.
    Navarro, A. Banon
    Baylor, L.
    Beidler, C. D.
    Beurskens, M.
    Biedermann, C.
    Birkenmeier, G.
    Bluhm, T.
    Boeckenhoff, D.
    Boeyaert, D.
    Bold, D.
    Borchardt, M.
    Borodin, D.
    Bosch, H. -S.
    Bouvain, H.
    Bozhenkov, S.
    Braeuer, T.
    Braune, H.
    Brandt, C.
    Brezinsek, S.
    Brunner, K. J.
    Bueschel, C.
    Bussiahn, R.
    Buzas, A.
    Buttenschoen, B.
    Bykov, V.
    Calvo, I.
    Cappa, A.
    Carovani, F.
    Carralero, D.
    Carls, A.
    Carvalho, B.
    NUCLEAR FUSION, 2024, 64 (11)
  • [48] Mechanical Monitoring Issues in Preparation to Next Step of Wendelstein 7-X Operation
    Bykov, Victor
    Carls, Andre
    Zhu, Jiawu
    van Eeten, Paul
    Wegener, Lutz
    Bosch, Hans-Stephan
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (05) : 1086 - 1094
  • [49] Overview of diagnostic performance and results for the first operation phase in Wendelstein 7-X (invited)
    Krychowiak, M.
    Adnan, A.
    Alonso, A.
    Andreeva, T.
    Baldzuhn, J.
    Barbui, T.
    Beurskens, M.
    Biel, W.
    Biedermann, C.
    Blackwell, B. D.
    Bosch, H. S.
    Bozhenkov, S.
    Brakel, R.
    Braeuer, T.
    de Carvalho, B. Brotas
    Burhenn, R.
    Buttenschoen, B.
    Cappa, A.
    Cseh, G.
    Czarnecka, A.
    Dinklage, A.
    Drews, P.
    Dzikowicka, A.
    Effenberg, F.
    Endler, M.
    Erckmann, V.
    Estrada, T.
    Ford, O.
    Fornal, T.
    Frerichs, H.
    Fuchert, G.
    Geiger, J.
    Grulke, O.
    Harris, J. H.
    Hartfuss, H. J.
    Hartmann, D.
    Hathiramani, D.
    Hirsch, M.
    Hoefel, U.
    Jablonski, S.
    Jakubowski, M. W.
    Kaczmarczyk, J.
    Klinger, T.
    Klose, S.
    Knauer, J.
    Kocsis, G.
    Koenig, R.
    Kornejew, P.
    Kraemer-Flecken, A.
    Krawczyk, N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [50] Configuration Space Control Using the Example of In-Vessel Components for Wendelstein 7-X
    Tretter, Joerg
    Boscary, Jean
    Mendelevitch, Boris
    Peacock, Alan
    Stadler, Reinhold
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (03) : 675 - 681