Hamilton-Jacobi quantization of constrained systems with second-order Lagrangians

被引:3
|
作者
Muslih, SI [1 ]
机构
[1] Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel
关键词
Hamiltonian and Lagrangian approach; Hamilton-Jacobi approach; second-order Lagrangians; path-integral quantization;
D O I
10.1023/B:CJOP.0000010581.01882.90
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the path-integral quantization of constrained systems with second-order Lagrangians using the Hamilton-Jacobi method. The path-integral quantization for two models is obtained using the canonical path-integral method.
引用
收藏
页码:1163 / 1171
页数:9
相关论文
共 50 条
  • [31] Hamilton-Jacobi quantization of the finite-dimensional systems with constraints
    Baleanu, D
    Güler, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (06): : 709 - 714
  • [32] Hamilton-Jacobi quantization of systems with time-dependent constraints
    Baleanu, D
    Güler, Y
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (05) : 861 - 866
  • [33] Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics
    Hernandez, Luis Gerardo Romero
    Cabrera, Jaime Manuel
    Lopez, Ramon Eduardo Chan
    Fuentes, Jorge Mauricio Paulin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (02)
  • [34] Second order numerical methods for first order Hamilton-Jacobi equations
    Szpiro, A
    Dupuis, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 1136 - 1183
  • [35] Hamilton-Jacobi equations constrained on networks
    Achdou, Yves
    Camilli, Fabio
    Cutri, Alessandra
    Tchou, Nicoletta
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 413 - 445
  • [36] Hamilton–Jacobi Quantization of Singular Lagrangians with Linear Velocities
    Sami I. Muslih
    Hosam A. El-Zalan
    Eqab M. Rabei
    International Journal of Theoretical Physics, 2005, 44 : 1271 - 1279
  • [37] Non-involutive constrained systems and Hamilton-Jacobi formalism
    Bertin, M. C.
    Pimentel, B. M.
    Valcarcel, C. E.
    ANNALS OF PHYSICS, 2008, 323 (12) : 3137 - 3149
  • [38] Constrained variational problems governed by second-order Lagrangians
    Treanta, Savin
    APPLICABLE ANALYSIS, 2020, 99 (09) : 1467 - 1484
  • [39] Improved Hamilton-Jacobi quantization for a nonholonomic system
    Hong, ST
    Kim, YW
    Kim, WT
    Park, YJ
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 43 (06) : 981 - 986
  • [40] On the Hamilton-Jacobi theory and quantization of generalized electrodynamics
    Weiss, P
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1938, 169 (A936) : 0119 - 0133