Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum)

被引:22
|
作者
Xie, H. [1 ]
Bai, G. [1 ]
Lu, P. [2 ]
Li, H. [2 ]
Fei, M. [1 ]
Xiao, B-G [1 ]
Chen, X-J [1 ]
Tong, Z-J [1 ]
Wang, Z-Y [2 ,3 ]
Yang, D-H [1 ]
机构
[1] Yunnan Acad Tobacco Agr Sci, Natl Tobacco Genet Engn Res Ctr, Tobacco Breeding & Biotechnol Res Ctr, Key Lab Tobacco Biotechnol Breeding, Kunming 650201, Yunnan, Peoples R China
[2] Guangdong Acad Sci, Inst Nanfan & Seed Ind, Zhanjiang 510316, Guangdong, Peoples R China
[3] Zhanjiang Sugarcane Res Ctr, Guangzhou Sugarcane Ind Res Inst, Zhanjiang, Peoples R China
关键词
Amino acids; citric acid; drought stress; gene expression; Nicotiana tabacum; OSMOTIC-STRESS; PLANT; SALT; EXPRESSION; GENES; METABOLISM; RESPONSES; L;
D O I
10.1111/plb.13371
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Organic acids play a pivotal role in improving plant response to long-term drought stress. External application of organic acids has been reported to improve drought resistance in several species. However, whether organic acids have similar effects in tobacco remains unknown. A screening study of the protective function of organic acids in tobacco and understanding the underlying molecular mechanism would be useful in developing a strategy for drought tolerance. Several physiological and molecular adaptations to drought including abscisic acid, stomatal closure, reactive oxygen species homeostasis, amino acid accumulation, and drought-responsive gene expression were observed by exogenous citric acid in tobacco plants. Exogenous application of 50 mm citric acid to tobacco plants resulted in higher chlorophyll content, net photosynthesis, relative water content, abscisic acid content and lower stomatal conductance, transpiration and water loss under drought conditions. Moreover, reactive oxygen species homeostasis was better maintained through increasing activity of antioxidant enzymes and decreasing hydrogen peroxide content after citric acid pretreatment under drought. Amino acids involved in the TCA cycle accumulated after external application of citric acid under drought stress. Furthermore, several drought stress-responsive genes also dramatically changed after application of citric acid. These data support the idea that external application of citric acid enhances drought resistance by affecting physiological and molecular regulation in tobacco. This study provides clear insights into mechanistic details of regulation of amino acid and stress-responsive gene expression by citric acid in tobacco in response to drought, which is promising for minimizing growth inhibition in agricultural fields.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [21] Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels
    Khan, Rayyan
    Ma, Xinghua
    Shah, Shahen
    Wu, Xiaoying
    Shaheen, Aaqib
    Xiao, Lixia
    Wu, Yuanhua
    Wang, Shusheng
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [22] Overexpression of DfRaf from Fragrant Woodfern (Dryopteris fragrans) Enhances High-Temperature Tolerance in Tobacco (Nicotiana tabacum)
    Song, Chunhua
    Fan, Qi
    Tang, Yuqing
    Sun, Yanan
    Wang, Li
    Wei, Mingchu
    Chang, Ying
    GENES, 2022, 13 (07)
  • [23] Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum
    Sarwat, Maryam
    Naqvi, Afsar Raza
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (09) : 5451 - 5464
  • [24] Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum
    Maryam Sarwat
    Afsar Raza Naqvi
    Molecular Biology Reports, 2013, 40 : 5451 - 5464
  • [25] Mechanistic basis for mitigating drought tolerance by selenium application in tobacco (Nicotiana tabacum L.): a multi-omics approach
    Dai, Huaxin
    Yang, Jinpeng
    Teng, Lidong
    Wang, Zhong
    Liang, Taibo
    Khan, Waleed Amjad
    Yang, Ruiwei
    Qiao, Baoming
    Zhang, Yanling
    Yang, Chunlei
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [26] NtCOMT1 responsible for phytomelatonin biosynthesis confers drought tolerance in Nicotiana tabacum
    Yao, Zhengping
    Zhang, Xue
    Liang, Yingchong
    Zhang, Jiemei
    Xu, Yi
    Chen, Suiyun
    Zhao, Dake
    PHYTOCHEMISTRY, 2022, 202
  • [27] Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum
    Yanmei Shi
    Pingping Liu
    Yuzhen Xia
    Pan Wei
    Wenzheng Li
    Wei Zhang
    Xia Chen
    Peijian Cao
    Yalong Xu
    Lifeng Jin
    Feng Li
    Zhaopeng Luo
    Chunyang Wei
    Jianfeng Zhang
    Xiaodong Xie
    Lingbo Qu
    Jun Yang
    Fucheng Lin
    Ran Wang
    Acta Physiologiae Plantarum, 2015, 37
  • [28] Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum
    Shi, Yanmei
    Liu, Pingping
    Xia, Yuzhen
    Wei, Pan
    Li, Wenzheng
    Zhang, Wei
    Chen, Xia
    Cao, Peijian
    Xu, Yalong
    Jin, Lifeng
    Li, Feng
    Luo, Zhaopeng
    Wei, Chunyang
    Zhang, Jianfeng
    Xie, Xiaodong
    Qu, Lingbo
    Yang, Jun
    Lin, Fucheng
    Wang, Ran
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (10)
  • [29] Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress
    Hu, W.
    Tian, S. B.
    Di, Q.
    Duan, S. H.
    Dai, K.
    PHOTOSYNTHETICA, 2018, 56 (04) : 1204 - 1211
  • [30] A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum)
    Guo, Xinyong
    Zhang, Li
    Dong, Gaoquan
    Xu, Zhihua
    Li, Guiming
    Liu, Ning
    Wang, Aiying
    Zhu, Jianbo
    PLANT SCIENCE, 2019, 289