partial derivative problem for the generalized Korteweg-de Vries equation

被引:0
|
作者
Zenchuk, AI [1 ]
机构
[1] Russian Acad Sci, LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.567940
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized Korteweg-de Vries equation, which has applications in hydrodynamics, in particular, is essentially the first example of a case in which the partial derivative dressing of a nonlinear equation is constructed by introducing into the dressing operator an arbitrary function of the independent variables of this equation. The proposed algorithm reveals a class of solutions of this equation which are expressed in terms of the solution of algebraic equations. An example of a new type of solution whose derivative with respect to the independent variables has a power-law singularity at some point is presented. (C) 1998 American Institute of Physics. [S0021-3640(98)01221-3].
引用
收藏
页码:750 / 755
页数:6
相关论文
共 50 条
  • [41] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [42] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [43] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [44] The convergence problem of the generalized Korteweg-de Vries equation in Fourier-Lebesgue space
    Zhang, Qiaoqiao
    Yan, Wei
    Duan, Jinqiao
    Yang, Meihua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 614 - 641
  • [45] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [46] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [47] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [48] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [49] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [50] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882