DNA translocation through an array of kinked nanopores

被引:0
|
作者
Chen, Zhu [1 ,2 ]
Jiang, Yingbing [3 ]
Dunphy, Darren R. [1 ,2 ]
Adams, David P. [3 ]
Hodges, Carter [3 ]
Liu, Nanguo [1 ,2 ]
Zhang, Nan [4 ]
Xomeritakis, George [1 ,2 ]
Jin, Xiaozhong [5 ,6 ]
Aluru, N. R. [5 ,6 ]
Gaik, Steven J. [7 ]
Hillhouse, Hugh W. [7 ]
Brinker, C. Jeffrey [1 ,2 ,3 ,8 ]
机构
[1] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] Univ New Mexico, Sch Pharm, Albuquerque, NM 87131 USA
[5] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
[8] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
SOLID-STATE NANOPORES; ATOMIC LAYER DEPOSITION; MESOPOROUS SILICA; THIN-FILMS; POLYNUCLEOTIDE MOLECULES; MEMBRANE CHANNEL; SINGLE; TRANSPORT; PORE; DISCRIMINATION;
D O I
10.1038/NMAT2805
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviours in more robust synthetic materials that are more readily integrated into practical devices. So far, the guided etching of polymer films, focused ion-beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometre resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of 'kinked' silica nanopores, using evaporation-induced self-assembly, and their further tuning and chemical derivatization using atomic-layer deposition. Compared with 'straight through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit up to fivefold reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally, we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth-like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length and shape, we capture the main functional behaviours of protein pores in our solid-state nanopore system.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 50 条
  • [21] Theory of sequence effects on DNA translocation through proteins and nanopores
    Muthukumar, M
    ELECTROPHORESIS, 2002, 23 (10) : 1417 - 1420
  • [22] Molecular dynamics study of DNA translocation through graphene nanopores
    Li, Jiapeng
    Zhang, Yan
    Yang, Juekuan
    Bi, Kedong
    Ni, Zhonghua
    Li, Deyu
    Chen, Yunfei
    PHYSICAL REVIEW E, 2013, 87 (06)
  • [23] Ionic liquid prolongs DNA translocation through graphene nanopores
    Kulkarni, Mandar
    Mukherjee, Arnab
    RSC ADVANCES, 2016, 6 (51) : 46019 - 46029
  • [24] Steric Modulation of Ionic Currents in DNA Translocation Through Nanopores
    Valerio Mazzone
    Simone Melchionna
    Umberto Marini Bettolo Marconi
    Journal of Statistical Physics, 2015, 158 : 1181 - 1194
  • [25] Controlling DNA Translocation Through Solid-state Nanopores
    Zhishan Yuan
    Youming Liu
    Min Dai
    Xin Yi
    Chengyong Wang
    Nanoscale Research Letters, 15
  • [26] Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores
    Comer, Jeffrey
    Dimitrov, Valentin
    Zhao, Qian
    Timp, Gregory
    Aksimentiev, Aleksei
    BIOPHYSICAL JOURNAL, 2009, 96 (02) : 593 - 608
  • [27] DNA translocation through pH-dependent soft nanopores
    Yousefi, Alireza
    Ganjizade, Ardalan
    Ashrafizadeh, Seyed Nezameddin
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (06): : 905 - 914
  • [28] Translocation Kinetics of DNA through Nanopores Interfaced with Agarose Gel
    Waugh, Matthew J.
    Tabard-Cossa, Vincent
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 215A - 215A
  • [29] Logic Gate Operation by DNA Translocation through Biological Nanopores
    Yasuga, Hiroki
    Kawano, Ryuji
    Takinoue, Masahiro
    Tsuji, Yutaro
    Osaki, Toshihisa
    Kamiya, Koki
    Miki, Norihisa
    Takeuchi, Shoji
    PLOS ONE, 2016, 11 (02):
  • [30] Controlling DNA Translocation Through Solid-state Nanopores
    Yuan, Zhishan
    Liu, Youming
    Dai, Min
    Yi, Xin
    Wang, Chengyong
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):