Universal property of the order parameter in quantum many-body systems

被引:15
|
作者
Panos, CP [1 ]
机构
[1] Aristotelian Univ Salonika, Dept Theoret Phys, GR-54006 Salonika, Greece
关键词
D O I
10.1016/S0375-9601(01)00619-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The order parameter Omega defined by Landsberg, is calculated for nuclei and atomic clusters. The framework of information theory is employed. It is seen that Omega is an increasing function of the number of particles N and the total kinetic energy T. The values of Omega are almost the same for the two systems under consideration. It is conjectured that these properties are universal. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 50 条
  • [31] Quantum Many-Body Systems in Thermal Equilibrium
    Alhambra, Alvaro M.
    PRX QUANTUM, 2023, 4 (04):
  • [32] Quantum hypothesis testing in many-body systems
    de Boer, Jan
    Godet, Victor
    Kastikainen, Jani
    Keski-Vakkuri, Esko
    SCIPOST PHYSICS CORE, 2021, 4 (02):
  • [33] Aspects of Entanglement in Quantum Many-Body Systems
    John W. Clark
    Hessam Habibian
    Aikaterini D. Mandilara
    Manfred L. Ristig
    Foundations of Physics, 2010, 40 : 1200 - 1220
  • [34] PERTURBATION EXPANSIONS FOR QUANTUM MANY-BODY SYSTEMS
    GELFAND, MP
    SINGH, RRP
    HUSE, DA
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1093 - 1142
  • [35] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [36] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [37] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [38] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [39] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [40] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):