Superdiffusivity of asymmetric exclusion process in dimensions one and two

被引:31
|
作者
Landim, C
Quastel, J
Salmhofer, M
Yau, HT
机构
[1] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[2] Univ Rouen, CNRS, UPRES A 6085, F-76128 Mont St Aignan, France
[3] Univ Toronto, Dept Math & Stat, Toronto, ON M5S 3G3, Canada
[4] Max Planck Inst Math, D-04103 Leipzig, Germany
[5] Univ Leipzig, D-04109 Leipzig, Germany
[6] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00220-003-1020-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as t(1/4) in dimension d=1 and (logt)(1/2) in d=2. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes.
引用
收藏
页码:455 / 481
页数:27
相关论文
共 50 条
  • [11] Stationary states of the one-dimensional facilitated asymmetric exclusion process
    Ayyer, A.
    Goldstein, S.
    Lebowitz, J. L.
    Speer, E. R.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 726 - 742
  • [12] SHOCKS IN THE ASYMMETRIC EXCLUSION PROCESS
    ANDJEL, ED
    BRAMSON, MD
    LIGGETT, TM
    PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (02) : 231 - 247
  • [13] Phase Diagrams and Current Density Profiles of the Totally Asymmetric Simple Exclusion Process in Two Dimensions, for a Three-Way Junction
    Septiana, Rini
    Indriawati, Annisa
    Dwandaru, Wipsar Sunu Brams
    MAKARA JOURNAL OF SCIENCE, 2014, 18 (03) : 79 - 85
  • [14] Weak and strong coupling in a two-lane asymmetric exclusion process
    Jiang, Rui
    Hu, Mao-Bin
    Wu, Yong-Hong
    Wu, Qing-Song
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [15] Orthogonal Polynomial Duality of a Two-Species Asymmetric Exclusion Process
    Danyil Blyschak
    Olivia Burke
    Jeffrey Kuan
    Dennis Li
    Sasha Ustilovsky
    Zhengye Zhou
    Journal of Statistical Physics, 190
  • [16] On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries
    Arvind Ayyer
    Joel L. Lebowitz
    Eugene R. Speer
    Journal of Statistical Physics, 2009, 135 : 1009 - 1037
  • [17] Phase Separation in a Bidirectional Two-Lane Asymmetric Exclusion Process
    Jiang, Rui
    Nishinari, Katsuhiro
    Hu, Mao-Bin
    Wu, Yong-Hong
    Wu, Qing-Song
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) : 73 - 88
  • [18] Orthogonal Polynomial Duality of a Two-Species Asymmetric Exclusion Process
    Blyschak, Danyil
    Burke, Olivia
    Kuan, Jeffrey
    Li, Dennis
    Ustilovsky, Sasha
    Zhou, Zhengye
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (05)
  • [19] Two-species asymmetric simple exclusion process with open boundaries
    Uchiyama, Masaru
    CHAOS SOLITONS & FRACTALS, 2008, 35 (02) : 398 - 407
  • [20] Phase Separation in a Bidirectional Two-Lane Asymmetric Exclusion Process
    Rui Jiang
    Katsuhiro Nishinari
    Mao-Bin Hu
    Yong-Hong Wu
    Qing-Song Wu
    Journal of Statistical Physics, 2009, 136 : 73 - 88