Sharp regularity estimates for second order fully nonlinear parabolic equations

被引:21
|
作者
Silva, Joao Vitor da [1 ]
Teixeira, Eduardo V. [2 ]
机构
[1] Univ Buenos Aires, Ciudad Univ Pabellon C1428EGA, Dept Math, FCEyN, Buenos Aires, DF, Argentina
[2] Univ Fed Ceara, Dept Matemat, Campus Piei,Bloco 914, BR-60455760 Fortaleza, Ceara, Brazil
关键词
35B65; 35K10;
D O I
10.1007/s00208-016-1506-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove sharp regularity estimates for viscosity solutions of fully nonlinear parabolic equations of the form u(t) - F (D(2)u, Du, X, t) = f (X, t) in Q(1), ( Eq) where F is elliptic with respect to the Hessian argument and f is an element of L-p,L-q (Q(1)). The quantity Xi(n, p, q) := n/p + 2/q determines to which regularity regime a solution of (Eq) belongs. We prove that when 1 < Xi(n, p, q) < 2 - epsilon F, solutions are parabolically alpha-Holder continuous for a sharp, quantitative exponent 0 < alpha(n, p, q) < 1. Precisely at the critical borderline case, Xi(n, p, q) = 1, we obtain sharp parabolic Log-Lipschitz regularity estimates. When 0 < Xi(n, p, q) < 1, solutions are locally of class C-1+sigma,C- 1+sigma/2 and in the limiting case Xi(n, p, q) = 0, we show parabolic C-1,C-Log-Lip regularity estimates provided F has "better" a priori estimates.
引用
收藏
页码:1623 / 1648
页数:26
相关论文
共 50 条
  • [41] Higher-order boundary regularity estimates for nonlocal parabolic equations
    Xavier Ros-Oton
    Hernán Vivas
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [42] Regularity of solutions of higher order nonlinear elliptic and parabolic equations
    Skrypnik, IV
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 147 - 157
  • [43] Higher-order boundary regularity estimates for nonlocal parabolic equations
    Ros-Oton, Xavier
    Vivas, Hernan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [44] Some sharp estimates for parabolic equations
    Haraux, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) : 110 - 128
  • [45] Regularity for solutions of nonlinear second order evolution equations
    Jeong, Jin-Mun
    Kim, Jin-Ran
    Kim, Han-Geul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 209 - 222
  • [46] SECOND ORDER REGULARITY FOR DEGENERATE NONLINEAR ELLIPTIC EQUATIONS
    Canino, Annamaria
    De Giorgio, Elisa
    Sciunzi, Berardino
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 4231 - 4242
  • [47] Geometric regularity estimates for fully nonlinear elliptic equations with free boundaries
    da Silva, Joao Vitor
    Alves Leitao Junior, Raimundo
    Chaves Ricarte, Gleydson
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) : 38 - 55
  • [48] Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations
    Byun, Sun-Sig
    Lee, Mikyoung
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 162 : 178 - 196
  • [49] Estimates for fundamental solutions of second-order parabolic equations
    Liskevich, V
    Semenov, Y
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 521 - 543
  • [50] On properties of solutions to nonlinear parabolic equations of the second order
    Dept. of Mechanics and Mathematics, Moscow State University, Moscow, Russia
    J Dyn Control Syst, 4 (523-546):