Two local observables are sufficient to characterize maximally entangled states of N qubits

被引:40
|
作者
Yan, Fengli [1 ,2 ]
Gao, Ting [3 ]
Chitambar, Eric [4 ,5 ]
机构
[1] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050016, Peoples R China
[2] Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050016, Peoples R China
[3] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
[4] Univ Toronto, Dept Phys, Toronto, ON M5S 3G4, Canada
[5] Univ Toronto, Dept Elect & Comp Engn, CQIQC, Toronto, ON M5S 3G4, Canada
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM CRYPTOGRAPHY; BELL; COMMUNICATION;
D O I
10.1103/PhysRevA.83.022319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Maximally entangled states (MES) represent a valuable resource in quantum information processing. In N-qubit systems the MES are N-GHZ states [i.e., the collection of vertical bar GHZ(N)> = 1/root 2(vertical bar 00 ... 0 > + vertical bar 11 ... 1 >)] and its local unitary (LU) equivalences. While it is well known that such states are uniquely stabilized by N commuting observables, in this article we consider the minimum number of noncommuting observables needed to characterize an N-qubit MES as the unique common eigenstate. Here, we prove, rather surprisingly, that in this general case any N-GHZ state can be uniquely stabilized by only two observables. Thus, for the task of MES certification, only two correlated measurements are required with each party observing the spin of his or her system along one of two directions.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Local discrimination of four or more maximally entangled states
    Tian, Guojing
    Yu, Sixia
    Gao, Fei
    Wen, Qiaoyan
    Oh, C. H.
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [22] Local distinguishability of maximally entangled states in canonical form
    Zhang, Zhi-Chao
    Gao, Fei
    Qin, Su-Juan
    Zuo, Hui-Juan
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2015, 14 (10) : 3961 - 3969
  • [23] Binegativity and geometry of entangled states in two qubits
    Ishizaka, S
    PHYSICAL REVIEW A, 2004, 69 (02): : 4
  • [24] Approximating local observables on projected entangled pair states
    Schwarz, M.
    Buerschaper, O.
    Eisert, J.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [25] Local measurement for a set of n-qubit maximally entangled states in cavity QED
    Yang, Chui-Ping
    Han, Siyuan
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [26] Local cloning of genuinely entangled states of three qubits
    Choudhary, Sujit K.
    Kar, Guruprasad
    Kunkri, Samir
    Rahaman, Ramij
    Roy, Anirban
    PHYSICAL REVIEW A, 2007, 76 (06):
  • [27] Entanglement Sudden Death and Birth Effects in Two Qubits Maximally Entangled Mixed States Under Quantum Channels
    Kapil K. Sharma
    Vladimir P. Gerdt
    International Journal of Theoretical Physics, 2020, 59 : 403 - 414
  • [28] Local Discrimination of Orthogonal Product States with a Two-Qubit Maximally Entangled State
    Tian-Qing Cao
    Qiao-Ling Xin
    Lu Zhao
    International Journal of Theoretical Physics, 2021, 60 : 1399 - 1415
  • [29] Entanglement Sudden Death and Birth Effects in Two Qubits Maximally Entangled Mixed States Under Quantum Channels
    Sharma, Kapil K.
    Gerdt, Vladimir P.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 403 - 414
  • [30] Local Discrimination of Orthogonal Product States with a Two-Qubit Maximally Entangled State
    Cao, Tian-Qing
    Xin, Qiao-Ling
    Zhao, Lu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (04) : 1399 - 1415