Free-Space Optical Communications with Generalized Pointing Errors

被引:0
|
作者
Yang, Fan [1 ]
Cheng, Julian [1 ]
Tsiftsis, Theodoros A. [2 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC, Canada
[2] TEI, Dept Elect Engn, Lamia 35100, Greece
关键词
ATMOSPHERIC-TURBULENCE CHANNELS; SPATIAL DIVERSITY; BER PERFORMANCE; FSO LINKS; PROBABILITY; CAPACITY; MODEL;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Free-space optical links are vulnerable to atmospheric fading and pointing errors. When a laser beam wanders, most previous works model the random radial displacement distance of the pointing error as a Rayleigh distributed random variable. However, for a non-ideally fast-tracked laser beam, the radial displacement distance at the receiver aperture may not obey the Rayleigh distribution, since the displacements in vertical and horizontal directions may not always follow a zero-mean Gaussian distribution. In this paper, we generalize a widely used pointing error model by assuming that the radial displacement distance follows a Rician distribution and derive a closed-form probability density function (PDF) of the generalized pointing error model. Furthermore, we derive closed-form PDFs for the composite lognormal and Gamma-Gamma turbulence channels using this generalized pointing error model. Error rate performance is also studied for an on-off keying signaling system with intensity modulation and direct detection in the presence of this generalized pointing error.
引用
收藏
页码:3943 / +
页数:2
相关论文
共 50 条
  • [41] Cross-QAM Signaling in Free Space Optical Communication Systems with Generalized Pointing Errors
    Sharma, Nikhil
    Garg, Parul
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [42] Wide-range fine pointing mechanism for free-space laser communications
    Aoki, K
    Yanagita, Y
    Kuroda, H
    Shiratama, K
    FREE-SPACE LASER COMMUNICATION AND ACTIVE LASER ILLUMINATION III, 2004, 5160 : 495 - 506
  • [43] MPPM Constellation Selection for Free-Space Optical Communications
    Trung Thanh Nguyen
    Lampe, Lutz
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (03) : 632 - 636
  • [44] Deep learning for enhanced free-space optical communications
    Bart, M. P.
    Savino, N. J.
    Regmi, P.
    Cohen, L.
    Safavi, H.
    Shaw, H. C.
    Lohani, S.
    Searles, T. A.
    Kirby, B. T.
    Lee, H.
    Glasser, R. T.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [45] Laser Guide Stars for Optical Free-Space Communications
    Calvo, Ramon Mata
    Calia, Domenico Bonaccini
    Barrios, Ricardo
    Centrone, Mauro
    Giggenbach, Dirk
    Lombardi, Gianluca
    Becker, Peter
    Zayer, Igor
    FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXIX, 2017, 10096
  • [46] Free-Space Optical MISO Communications With an Array of Detectors
    Bashir, Muhammad Salman
    Alouini, Mohamed-Slim
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 (01): : 1765 - 1780
  • [47] A Transmission Control Protocol for Free-Space Optical Communications
    Hasegawa, Yohei
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [48] Adaptive optics for the free-space coherent optical communications
    Liu, Chao
    Chen, Mo
    Chen, Shanqiu
    Xian, Hao
    OPTICS COMMUNICATIONS, 2016, 361 : 21 - 24
  • [49] LDPC Decoding Techniques for Free-Space Optical Communications
    Youssef, Albashir Adel
    Abaza, Mohamed
    Alatawi, Ayshah S.
    IEEE ACCESS, 2021, 9 : 133510 - 133519
  • [50] Adaptive transceivers for mobile free-space optical communications
    Minch, Jeffrey R.
    Gervais, David R.
    Townsend, Daniel J.
    MILCOM 2006, VOLS 1-7, 2006, : 2813 - +