Random sequences of integers, Sidon sets, density in the Bohr group, and sets of analyticity

被引:3
|
作者
Kahane, Jean-Pierre [1 ]
Katznelson, Yitzhak
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.crma.2007.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Random sequences of integers, Sidon sets, density in the Bohr group, and sets of analyticity. We study properties of a sequence A obtained by a random selection of integers n, where n epsilon Lambda with probability pi(n) independently of the other choices. We distinguish two cases: if lim sup(n ->infinity)n pi(n) < infinity, A is a.s. a Sidon set, non-dense in the Bohr group; if lim(n ->infinity) n pi(n) = infinity, then Lambda is a.s. a set of analyticity and is dense in the Bohr group.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [21] DIFFERENCE SETS OF SEQUENCES OF INTEGERS .3.
    SARKOZY, A
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (3-4): : 355 - 386
  • [22] DIFFERENCE SETS OF SEQUENCES OF INTEGERS .1.
    SARKOZY, A
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (1-2): : 125 - 149
  • [23] New Constructions of Extended Sonar Sequences From Sidon Sets
    Delgado Ordonez, Luis Miguel
    Martos Ojeda, Carlos Andres
    Trujillo, Carlos A.
    IEEE ACCESS, 2022, 10 : 3343 - 3350
  • [24] ERGODIC THEORY AND MEASURE OF SETS IN BOHR GROUP
    BLUM, JR
    EISENBER.B
    HAHN, LS
    ACTA SCIENTIARUM MATHEMATICARUM, 1973, 34 (01): : 17 - 24
  • [25] An Extension of the Dirichlet Density for Sets of Gaussian Integers
    Rego, L. C.
    Cintra, R. J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (01): : 161 - 172
  • [26] On the density or measure of sets and their sumsets in the integers or the circle
    Bienvenu, Pierre-Yves
    Hennecart, Francois
    JOURNAL OF NUMBER THEORY, 2020, 212 : 285 - 310
  • [27] On the density of the sum of sets of positive integers II
    Brauer, A
    ANNALS OF MATHEMATICS, 1944, 42 : 959 - 988
  • [28] ASYMPTOTIC DENSITY OF SETS OF INTEGERS .2.
    ERDOS, P
    SAFFARI, B
    VAUGHAN, RC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (FEB): : 17 - 20
  • [29] SOME SETS OF SEQUENCES OF POSITIVE INTEGERS AND NORMAL NUMBERS
    SCHWEIGER, F
    SALAT, T
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (09): : 1255 - 1264
  • [30] SIDON SETS ASSOCIATED WITH A CLOSED SUBSET OF A COMPACT ABELIAN GROUP
    DUDLEY, EV
    PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (01) : 33 - 40