Energetic consistency and momentum conservation in the gyrokinetic description of tokamak plasmas

被引:106
|
作者
Scott, B. [1 ]
Smirnov, J. [1 ]
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
关键词
DRIFT INSTABILITIES; PARTICLE SIMULATION; ALFVEN WAVES; TRANSPORT; EQUATIONS; FIELD; EQUILIBRIA; STABILITY; DYNAMICS;
D O I
10.1063/1.3507920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Gyrokinetic field theory is addressed in the context of a general Hamiltonian The background magnetic geometry is static and axisymmetric and all dependence of the Lagrangian on dynamical variables is in the Hamiltonian or in free field terms Equations for the fields are given by functional derivatives The symmetry through the Hamiltonian with time and toroidal angle invariance of the geometry lead to energy and toroidal momentum conservation In various levels of ordering against fluctuation amplitude, energetic consistency is exact The role of this in the underpinning of conservation laws is emphasized Local transport equations for the vorticity, toroidal momentum, and energy are derived In particular, the momentum equation is shown for any form of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic form when long wavelength approximations are taken in the Hamiltonian Several currently used forms, those which form the basis of most global simulations, are shown to be well defined within the gyrokinetic field theory and energetic consistency (C) 2010 American Institute of Physics [doi 10 1063/1 3507920]
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Linear gyrokinetic theory for kinetic magnetohydrodynamic eigenmodes in tokamak plasmas
    Qin, H
    Tang, WM
    Rewoldt, G
    PHYSICS OF PLASMAS, 1999, 6 (06) : 2544 - 2562
  • [22] Observation of anomalous momentum transport in tokamak plasmas with no momentum input
    Lee, WD
    Rice, JE
    Marmar, ES
    Greenwald, MJ
    Hutchinson, IH
    Snipes, JA
    PHYSICAL REVIEW LETTERS, 2003, 91 (20)
  • [23] The impact of energetic particles and rotation on tokamak plasmas
    Hole, M.
    McClements, K. G.
    Dennis, G.
    Fitzgerald, M.
    Akers, R.
    THEORY OF FUSION PLASMAS: JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP, 2010, 260
  • [24] Gyrokinetic modelling of macro-instabilities in high performance tokamak plasmas
    Jaun, A
    Fasoli, A
    Testa, D
    Vaclavik, J
    Villard, L
    PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 : A207 - A216
  • [25] Exploring the regime of validity of global gyrokinetic simulations with spherical tokamak plasmas
    Ren, Y.
    Wang, W. X.
    Guttenfelder, W.
    Kaye, S. M.
    Ruiz-Ruiz, J.
    Ethier, S.
    Bell, R.
    LeBlanc, B. P.
    Mazzucato, E.
    Smith, D. R.
    Domier, C. W.
    Yuh, H.
    NUCLEAR FUSION, 2020, 60 (02)
  • [26] Spontaneous rotation and momentum transport in tokamak plasmas
    Rice, J. E.
    11TH IAEA TECHNICAL MEETING ON H-MODE PHYSICS AND TRANSPORT BARRIERS, 2008, 123
  • [27] Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
    Xu, X. Q.
    PHYSICAL REVIEW E, 2008, 78 (01):
  • [28] Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak plasmas
    Merlo, G.
    Sauter, O.
    Brunner, S.
    Burckel, A.
    Camenen, Y.
    Casson, F. J.
    Dorland, W.
    Fable, E.
    Goerler, T.
    Jenko, F.
    Peeters, A. G.
    Told, D.
    Villard, L.
    PHYSICS OF PLASMAS, 2016, 23 (03)
  • [29] Unraveling Quasiperiodic Relaxations of Transport Barriers with Gyrokinetic Simulations of Tokamak Plasmas
    Strugarek, A.
    Sarazin, Y.
    Zarzoso, D.
    Abiteboul, J.
    Brun, A. S.
    Cartier-Michaud, T.
    Dif-Pradalier, G.
    Garbet, X.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    Passeron, C.
    Thomine, O.
    PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [30] Conservation of energy and momentum in nonrelativistic plasmas
    Sugama, H.
    Watanabe, T. -H.
    Nunami, M.
    PHYSICS OF PLASMAS, 2013, 20 (02)