A characterization of the Fermat quartic K3 surface by means of finite symmetries

被引:11
|
作者
Oguiso, K [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
K3; surface; Fermat quartic surface; finite automorphism group;
D O I
10.1112/S0010437X04001010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the Fermat quartic K3 surface, among all K3 surfaces, by means of its finite group symmetries.
引用
收藏
页码:404 / 424
页数:21
相关论文
共 50 条
  • [31] DIFFEOMORPHISMS OF A K3 SURFACE
    BORCEA, C
    MATHEMATISCHE ANNALEN, 1986, 275 (01) : 1 - 4
  • [32] The 1729 K3 surface
    Ono K.
    Trebat-Leder S.
    Research in Number Theory, 2 (1)
  • [33] Elliptic fibrations on quartic K3 surfaces with large picard numbers
    Kuwata, M
    PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (01) : 231 - 243
  • [34] Isomorphic Quartic K3 Surfaces in the View of Cremona and Projective Transformations
    Oguiso, Keiji
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 671 - 688
  • [35] Landau-Ginzburg orbifolds and symmetries of K3 CFTs
    Miranda C.N. Cheng
    Francesca Ferrari
    Sarah M. Harrison
    Natalie M. Paquette
    Journal of High Energy Physics, 2017
  • [36] Mathieu Moonshine and symmetries of K3 s-models
    Volpato, Roberto
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (9-10): : 1112 - 1117
  • [37] Landau-Ginzburg orbifolds and symmetries of K3 CFTs
    Cheng, Miranda C. N.
    Ferrari, Francesca
    Harrison, Sarah M.
    Paquette, Natalie M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (01):
  • [38] Finite subgroups of automorphisms of K3 surfaces
    Brandhorst, Simon
    Hofmann, Tommy
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [39] FINITE SYMPLECTIC ACTIONS ON THE K3 LATTICE
    Hashimoto, Kenji
    NAGOYA MATHEMATICAL JOURNAL, 2012, 206 : 99 - 153
  • [40] On Oguiso's K3 surface
    Taki, Shingo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 391 - 394