Cellular automaton for chimera states

被引:7
|
作者
Garcia-Morales, Vladimir [1 ]
机构
[1] Univ Valencia, Dept Termodinam, E-46100 Burjassot, Spain
关键词
SPONTANEOUS SYNCHRONY; POPULATIONS; MAP; DYNAMICS;
D O I
10.1209/0295-5075/114/18002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed. Copyright (C) EPLA, 2016
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A cellular automaton for a surface reaction: Stabilization from chaotic to periodical states
    Lemos, M. C.
    Cordoba, A.
    ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (01) : 32 - 37
  • [22] Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model
    Ilnytskyi, Jaroslav
    Pikuta, Piotr
    Ilnytskyi, Hryhoriy
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 241 - 255
  • [23] A stochastic cellular automaton model for traffic flow with multiple metastable states
    Nishinari, K
    Fukui, M
    Schadschneider, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (09): : 3101 - 3110
  • [24] A Simple Three-@States Cellular Automaton for Modelling Excitable Media
    Andrecut, M.
    International Journal of Modern Physics B, 12 (05):
  • [25] Robust features of chimera states and the implementation of alternating chimera states
    Ma, Rubao
    Wang, Jianxiong
    Liu, Zonghua
    EPL, 2010, 91 (04)
  • [26] A SOLITON CELLULAR AUTOMATON
    TAKAHASHI, D
    SATSUMA, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (10) : 3514 - 3519
  • [27] CELLULAR AUTOMATON CRYPTOSYSTEMS
    Rososhek, S. K.
    Borovkov, A. A.
    Evsutin, O. O.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2008, 1 (01): : 43 - 49
  • [28] CELLULAR AUTOMATON SUPERCOLLIDERS
    Martinez, Genaro J.
    Adamatzky, Andrew
    Stephens, Christopher R.
    Hoeflich, Alejandro F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (04): : 419 - 439
  • [29] A Morphogenetic Cellular Automaton
    Beros, Achilles
    Chyba, Monique
    Fronville, Alexandra
    Mercier, Frederic
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1987 - 1992
  • [30] A chaos cellular automaton
    Nakagawa, M
    STATISTICAL PHYSICS, 2000, 519 : 232 - 234