Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo-Fabrizio fractional derivative

被引:9
|
作者
Qiao, Haili [1 ]
Liu, Zhengguang [2 ]
Cheng, Aijie [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed-order; Caputo-Fabrizio derivatives; Compact finite difference; Stability and convergence; Numerical experiments; FINITE-ELEMENT-METHOD; ANOMALOUS DIFFUSION; WAVE-EQUATIONS; TRANSPORT; MODELS;
D O I
10.1186/s13662-020-2514-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grunwald formula. We show that these two schemes are unconditionally stable with convergence rates O(tau 2+h2+Delta alpha 2) and O(tau 2+h4+Delta alpha 4) in discrete L2, respectively, where Delta alpha, h, and tau are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] ANALYTICAL AND NUMERICAL STUDY OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Bekkouche, Mohammed Moumen
    Ahmed, Abdelaziz Azeb
    Yazid, Fares
    Djeradi, Fatima Siham
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2177 - 2193
  • [32] HIGHER ORDER MULTI-TERM TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS INVOLVING CAPUTO-FABRIZIO DERIVATIVE
    Karimov, Erkinjon
    Pirnafasov, Sardor
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [33] Solutions of some typical nonlinear differential equations with Caputo-Fabrizio fractional derivative
    Cui, Zhoujin
    AIMS MATHEMATICS, 2022, 7 (08): : 14139 - 14153
  • [34] Modeling and analysis of fractional order Buck converter using Caputo-Fabrizio derivative
    Yang, Ruocen
    Liao, Xiaozhong
    Lin, Da
    Dong, Lei
    ENERGY REPORTS, 2020, 6 : 440 - 445
  • [35] Study of fractional integro-differential equations under Caputo-Fabrizio derivative
    Shah, Kamal
    Gul, Rozi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (13) : 7940 - 7953
  • [36] Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation
    Atangana, Abdon
    Alqahtani, Rubayyi T.
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [37] Stability analysis of fractional-order linear system with time delay described by the Caputo-Fabrizio derivative
    Li, Hong
    Zhong, Shou-ming
    Cheng, Jun
    Li, Hou-biao
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [38] A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo-Fabrizio fractional derivative
    Shi, Jiankang
    Chen, Minghua
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 246 - 262
  • [39] Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation
    Abdon Atangana
    Rubayyi T Alqahtani
    Advances in Difference Equations, 2016
  • [40] A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator
    Anjam, Yasir Nadeem
    Shafqat, Ramsha
    Sarris, Ioannis E.
    Ur Rahman, Mati
    Touseef, Sajida
    Arshad, Muhammad
    FRACTAL AND FRACTIONAL, 2022, 6 (11)