Janus Biopolymer Sponge with Porous Structure Based on Water Hyacinth Petiole for Efficient Solar Steam Generation

被引:9
|
作者
Li, Junying [1 ]
Chen, Sheng [1 ,2 ]
Li, Cuihuan [1 ]
Cao, Mengyao [1 ]
Mu, Jiahui [1 ]
Nawaz, Haq [1 ]
Ling, Zhe [3 ]
Xu, Feng [1 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
[2] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
[3] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus; biopolymer sponge; porous structure; water hyacinth; solar steam generation; ADVANCED DESIGNS; DESALINATION; EVAPORATION; COMPOSITES; MEMBRANE; DEVICE;
D O I
10.3390/ijms23169185
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Solar-driven steam generation for desalination is a facile, sustainable, and energy-saving approach to produce clean freshwater. However, the complicated fabrication process, high cost, potential environmental impact, and salt crystallization of conventional evaporators limit their large-scale application. Herein, we present a sustainable Janus evaporator based on a biopolymer sponge from the water hyacinth petiole (WHP) for high-performance solar steam generation. The freeze-dried WHP maintained its original porous structure and aligned channels well, and therefore holds the capability for rapid water transport due to strong capillary action. The WHP coated with carbon nanotubes/ethyl cellulose paste on its surface (WHP-C) gains a good photothermal property, thus achieving an efficient solar steam generation with a rate of 1.50 kg m(-2) h(-1) under 1 sun irradiation. Moreover, the WHP-C after hydrophobic modification by fluorocarbon (WHP-CH) is endowed with high water repellency and exhibits good salt resistance during long-term solar desalination. Additionally, we demonstrate that a stable wet surface that enables efficient water supply and vapor escape is also significant to the successive desalination of a solar evaporator. Our work provides new insights into the high-value utilization of biomass waste, i.e., water hyacinth, and the development of sustainable interfacial solar evaporators for the environmentally friendly production of freshwater.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Salt-Resistant Photothermal Materials Based on Monolithic Porous Ionic Polymers for Efficient Solar Steam Generation
    Wang, Fei
    Su, Yanning
    Li, Yuanzhen
    Wei, Dongyuan
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 8746 - 8754
  • [32] Fully Lignocellulosic Biomass-Based Double-Layered Porous Hydrogel for Efficient Solar Steam Generation
    Lin, Xuliang
    Wang, Ping
    Hong, Ruitong
    Zhu, Xi
    Liu, Yingchun
    Pan, Xuejun
    Qiu, Xueqing
    Qin, Yanlin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
  • [33] Hierarchical open porous black PDMS membrane toward efficient solar to steam generation
    Go, Kwangmo
    Gil, Manjae
    Moon, Seongjun
    Lee, Kyung Jin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [34] Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation
    Shan, Xiaoli
    Lin, Yawen
    Zhao, Aiding
    Di, Yunsong
    Hu, Yujing
    Guo, Yajie
    Gan, Zhixing
    NANOTECHNOLOGY, 2019, 30 (42)
  • [35] Coffee Grounds-Doped Alginate Porous Materials for Efficient Solar Steam Generation
    Xiao, Chaohu
    Wang, Shanshan
    Guo, Yuping
    Zhang, Yuhan
    Hasi, Qi-Meige
    Tian, Qi
    Chen, Lihua
    LANGMUIR, 2022, 38 (05) : 1888 - 1896
  • [36] CAU-10-H as efficient water sorbent for solar steam generation
    Hu, Tsai-Ning
    Hsu, Cheng-Hsun
    Chiou, Da-Shiuan
    Kang, Dun-Yen
    Luo, Shyh-Chyang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 141
  • [37] SiO2/MXene/Poly(tetrafluoroethylene)-Based Janus Membranes as Solar Absorbers for Solar Steam Generation
    Li, Hao
    Li, Ling
    Xiong, Li
    Wang, Beibei
    Wang, Gang
    Ma, Shenghua
    Han, Xiaojun
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 14274 - 14284
  • [38] A photothermal reservoir for highly efficient solar steam generation without bulk water
    Wu, Xuan
    Gao, Ting
    Han, Chenhui
    Xu, Jingsan
    Owens, Gary
    Xu, Haolan
    SCIENCE BULLETIN, 2019, 64 (21) : 1625 - 1633
  • [39] A photothermal reservoir for highly efficient solar steam generation without bulk water
    Xuan Wu
    Ting Gao
    Chenhui Han
    Jingsan Xu
    Gary Owens
    Haolan Xu
    Science Bulletin, 2019, 64 (21) : 1625 - 1633
  • [40] Sugarcane-Based Photothermal Materials for Efficient Solar Steam Generation
    Xiao, Chaohu
    Chen, Lihua
    Mu, Peng
    Jia, Juan
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    CHEMISTRYSELECT, 2019, 4 (27): : 7891 - 7895