A semiclassical approach to surface Fermi arcs in Weyl semimetals

被引:2
|
作者
Huang, Jiajia [1 ]
Wang, Luyang [2 ]
Yao, Dao-Xin [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangdong Prov Key Lab Magnetoelect Phys & Dev, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Int Quantum Acad, Shenzhen 518048, Peoples R China
基金
中国国家自然科学基金;
关键词
Weyl semimetals; surface Fermi arcs; semiclassical equations of motion; Dirac semimetals; surface magnetoplasma; 71; 20; Gj; 73; -r; Mf; 03; 65; Vf; DISCOVERY; PHASE;
D O I
10.1007/s11433-021-1884-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a semiclassical explanation for the morphology of the surface Fermi arcs of Weyl semimetals. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiral structure of Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field, and find that the drift motion, the chiral magnetic effect and the Imbert-Fedorov shift are all involved in the formation of surface Fermi arcs. Our work not only provides an insightful perspective on the surface Fermi arcs and a practical way to find the surface dispersion, but also paves the way for the study of other physical properties of the surface states of topological semimetals, such as transport properties and orbital magnetization, using semiclassical methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The Fermi gerbe of Weyl semimetals
    Alan Carey
    Guo Chuan Thiang
    Letters in Mathematical Physics, 2021, 111
  • [32] Surface Fermi arcs in Z2 Weyl semimetals A3Bi (A = Na, K, Rb)
    Gorbar, E. V.
    Miransky, V. A.
    Shovkovy, I. A.
    Sukhachov, P. O.
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [33] Landau levels, Bardeen polynomials, and Fermi arcs in Weyl semimetals: Lattice-based approach to the chiral anomaly
    Behrends, Jan
    Roy, Sthitadhi
    Kolodrubetz, Michael H.
    Bardarson, Jens H.
    Grushin, Adolfo G.
    PHYSICAL REVIEW B, 2019, 99 (14)
  • [34] The Fermi gerbe of Weyl semimetals
    Carey, Alan
    Thiang, Guo Chuan
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [35] Entanglement signature of hinge arcs, Fermi arcs, and crystalline symmetry protection in higher-order Weyl semimetals
    Zhou, Yao
    Ye, Peng
    PHYSICAL REVIEW B, 2023, 107 (08)
  • [36] Connecting the dots: Time-reversal symmetric Weyl semimetals with tunable Fermi arcs
    Dwivedi, Vatsal
    Ramamurthy, Srinidhi T.
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [37] Fragility of Fermi arcs in Dirac semimetals
    Wu, Yun
    Jo, Na Hyun
    Wang, Lin-Lin
    Schmidt, Connor A.
    Neilson, Kathryn M.
    Schrunk, Benjamin
    Swatek, Przemyslaw
    Eaton, Andrew
    Bud'ko, S. L.
    Canfield, P. C.
    Kaminski, Adam
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [38] Double Weyl points and Fermi arcs of topological semimetals in non-Abelian gauge potentials
    Lepori, L.
    Fulga, I. C.
    Trombettoni, A.
    Burrello, M.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [39] Fermi arc plasmons in Weyl semimetals
    Song, Justin C. W.
    Rudner, Mark S.
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [40] Unconventional Photocurrents from Surface Fermi Arcs in Topological Chiral Semimetals
    Chang, Guoqing
    Yin, Jia-Xin
    Neupert, Titus
    Sanchez, Daniel S.
    Belopolski, Ilya
    Zhang, Songtian S.
    Cochran, Tyler A.
    Cheng, Zijia
    Hsu, Ming-Chien
    Huang, Shin-Ming
    Lian, Biao
    Xu, Su-Yang
    Lin, Hsin
    Hasan, M. Zahid
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)