Stratification of carotid atheromatous plaque using interpretable deep learning methods on B-mode ultrasound images

被引:4
|
作者
Ganitidis, Theofanis [1 ]
Athanasiou, Maria [1 ]
Dalakleidi, Kalliopi [1 ]
Melanitis, Nikos [1 ]
Golemati, Spyretta [1 ,2 ]
Nikita, Konstantina S. [1 ]
机构
[1] Natl Tech Univ Athens NTUA, Biomed Simulat & Imaging BIOSIM Lab, 9 Iroon Polytech Str, Zografos 15780, Greece
[2] Natl & Kapodistrian Univ Athens, Med Sch, Athens, Greece
关键词
Carotid; image analysis; ultrasound; deep learning; medical imaging; interpretability; explainable AI; ATHEROSCLEROSIS; CLASSIFICATION;
D O I
10.1109/EMBC46164.2021.9630402
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Carotid atherosclerosis is the major cause of ischemic stroke resulting in significant rates of mortality and disability annually. Early diagnosis of such cases is of great importance, since it enables clinicians to apply a more effective treatment strategy. This paper introduces an interpretable classification approach of carotid ultrasound images for the risk assessment and stratification of patients with carotid atheromatous plaque. To address the highly imbalanced distribution of patients between the symptomatic and asymptomatic classes (16 vs 58, respectively), an ensemble learning scheme based on a sub-sampling approach was applied along with a two-phase, cost-sensitive strategy of learning, that uses the original and a resampled data set. Convolutional Neural Networks (CNNs) were utilized for building the primary models of the ensemble. A six-layer deep CNN was used to automatically extract features from the images, followed by a classification stage of two fully connected layers. The obtained results (Area Under the ROC Curve (AUC): 73% sensitivity: 75% specificity: 70%) indicate that the proposed approach achieved acceptable discrimination performance. Finally, interpretability methods were applied on the model's predictions in order to reveal insights on the model's decision process as well as to enable the identification of novel image biomarkers for the stratification of patients with carotid atheromatous plaque.
引用
收藏
页码:3902 / 3905
页数:4
相关论文
共 50 条
  • [21] Robust Carotid Artery Recognition in Longitudinal B-Mode Ultrasound Images
    Sifakis, Emmanouil G.
    Golemati, Spyretta
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) : 3762 - 3772
  • [22] Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: Correlation with visual classification and histological examination
    Technical Univ of Denmark, Lyngby, Denmark
    IEEE Trans Med Imaging, 6 (910-922):
  • [23] Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: Correlation with visual classification and histological examination
    Wilhjelm, JE
    Gronholdt, MLM
    Wiebe, B
    Jespersen, SK
    Hansen, LK
    Sillesen, H
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (06) : 910 - 922
  • [24] Deep learning based on carotid transverse B-mode scan videos for the diagnosis of carotid plaque: a prospective multicenter study
    Jia Liu
    Xinrui Zhou
    Hui Lin
    Xue Lu
    Jian Zheng
    Erjiao Xu
    Dianhu Jiang
    Hui Zhang
    Xin Yang
    Junlin Zhong
    Xindi Hu
    Yuhao Huang
    Yanling Zhang
    Jiamin Liang
    Qin Liu
    Min Zhong
    Yuansen Chen
    Huixiang Yan
    Haowen Deng
    Rongqin Zheng
    Dong Ni
    Jie Ren
    European Radiology, 2023, 33 : 3478 - 3487
  • [25] Deep learning based on carotid transverse B-mode scan videos for the diagnosis of carotid plaque: a prospective multicenter study
    Liu, Jia
    Zhou, Xinrui
    Lin, Hui
    Lu, Xue
    Zheng, Jian
    Xu, Erjiao
    Jiang, Dianhu
    Zhang, Hui
    Yang, Xin
    Zhong, Junlin
    Hu, Xindi
    Huang, Yuhao
    Zhang, Yanling
    Liang, Jiamin
    Liu, Qin
    Zhong, Min
    Chen, Yuansen
    Yan, Huixiang
    Deng, Haowen
    Zheng, Rongqin
    Ni, Dong
    Ren, Jie
    EUROPEAN RADIOLOGY, 2023, 33 (05) : 3478 - 3487
  • [26] Atherosclerotic plaque classification in carotid ultrasound images using machine learning and explainable deep learning
    Singh, Soni
    Jain, Pankaj K.
    Sharma, Neeraj
    Pohit, Mausumi
    Roy, Sudipta
    INTELLIGENT MEDICINE, 2024, 4 (02): : 83 - 95
  • [27] Automatic Lumen Detection on Longitudinal Ultrasound B-Mode Images of the Carotid Using Phase Symmetry
    Rouco, Jose
    Azevedo, Elsa
    Campilho, Aurelio
    SENSORS, 2016, 16 (03):
  • [28] Fully Automated Carotid Plaque Segmentation in Combined B-mode and Contrast Enhanced Ultrasound
    Akkus, Zeynettin
    de Jong, Nico
    van der Steen, Antonius F. W.
    Bosch, Johan G.
    van den Oord, Stijn C. H.
    Schinkel, Arend F. L.
    Carvalho, Diego D. B.
    Niessen, Wiro J.
    Klein, Stefan
    2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 911 - 914
  • [29] Segmentation of the carotid intima-media region in B-mode ultrasound images
    Rocha, Rui
    Campilho, Aurelio
    Silva, Jorge
    Azevedo, Elsa
    Santos, Rosa
    IMAGE AND VISION COMPUTING, 2010, 28 (04) : 614 - 625
  • [30] Preoperative B-mode ultrasound plaque appearance compared with carotid endarterectomy specimen histology
    Schulte-Altedorneburg, G
    Droste, DW
    Haas, N
    Kemény, V
    Nabavi, DG
    Füzesi, L
    Ringelstein, EB
    ACTA NEUROLOGICA SCANDINAVICA, 2000, 101 (03): : 188 - 194