POSTERIOR CONSISTENCY FOR GAUSSIAN PROCESS APPROXIMATIONS OF BAYESIAN POSTERIOR DISTRIBUTIONS

被引:73
|
作者
Stuart, Andrew M. [1 ,2 ]
Teckentrup, Aretha L. [1 ,3 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[2] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA
[3] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Inverse problem; Bayesian approach; surrogate model; Gaussian process regression; posterior consistency; INTERPOLATION; CALIBRATION; UNCERTAINTY; EFFICIENT; SIMULATIONS; MODELS; MCMC;
D O I
10.1090/mcom/3244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the use of Gaussian process emulators to approximate the parameter-to-observation map or the negative log-likelihood in Bayesian inverse problems. We prove error bounds on the Hellinger distance between the true posterior distribution and various approximations based on the Gaussian process emulator. Our analysis includes approximations based on the mean of the predictive process, as well as approximations based on the full Gaussian process emulator. Our results show that the Hellinger distance between the true posterior and its approximations can be bounded by moments of the error in the emulator. Numerical results confirm our theoretical findings.
引用
收藏
页码:721 / 753
页数:33
相关论文
共 50 条
  • [21] Asymptotic approximations to posterior distributions via conditional moment equations
    Yee, JL
    Johnson, WO
    Samaniego, FJ
    BIOMETRIKA, 2002, 89 (04) : 755 - 767
  • [22] Approximations of posterior distributions in blind deconvolution using variational methods
    Mateos, J
    Molina, R
    Katsaggelos, AK
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 1597 - 1600
  • [23] Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
    Martino, Luca
    Llorente, Fernando
    Curbelo, Ernesto
    Lopez-Santiago, Javier
    Miguez, Joaquin
    MATHEMATICS, 2021, 9 (07)
  • [24] Prior and Posterior Dirichlet Distributions on Bayesian Networks (BNs)
    Saputro, Dewi Retno Sari
    Widyaningsih, Purnami
    Handayani, Feri
    Kurdhi, Nughthoh Arfawi
    STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [25] Learning bounds for a generalized family of Bayesian posterior distributions
    Zhang, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1149 - 1156
  • [26] Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators
    Kekkonen, Hanne
    Lassas, Matti
    Siltanen, Samuli
    INVERSE PROBLEMS, 2016, 32 (08)
  • [27] A Direct Approach to Understanding Posterior Consistency of Bayesian Regression Problems
    Yi, Seongbaek
    Choi, Taeryon
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (18) : 3315 - 3326
  • [28] On posterior consistency of tail index for Bayesian kernel mixture models
    Li, Cheng
    Lin, Lizhen
    Dunson, David B.
    BERNOULLI, 2019, 25 (03) : 1999 - 2028
  • [29] Bayesian Detection of Causal Rare Variants under Posterior Consistency
    Liang, Faming
    Xiong, Momiao
    PLOS ONE, 2013, 8 (07):
  • [30] Gaussian Process Classification Using Posterior Linearization
    Garcia-Fernandez, Angel F.
    Tronarp, Filip
    Sarkka, Simo
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 735 - 739