Coupling strategies for compressible-low Mach number flows

被引:4
|
作者
Penel, Yohan [1 ,2 ,3 ,4 ]
Dellacherie, Stephane [5 ]
Despres, Bruno [3 ,6 ]
机构
[1] Minist Ecol Sustainable Dev & Energy, CEREMA, Team ANGE, Paris, France
[2] Inria Paris Rocquencourt, F-78153 Le Chesnay, France
[3] Sorbonne Univ, Univ Paris 06, F-75005 Paris, France
[4] Sorbonne Univ, CNRS, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
[5] Commissariat Energie Atom & Energies Alternat, DEN DANS STMF DM2S, F-91191 Gif Sur Yvette, France
[6] Sorbonne Univ, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
来源
关键词
Mach number; coupling; transmission conditions; steady states; NONLINEAR HYPERBOLIC SYSTEMS; POROUS-MEDIA FLOW; INCOMPRESSIBLE LIMIT; NUMERICAL-SOLUTION; CONSERVATION-LAWS; SINGULAR LIMITS; UPWIND SCHEMES; FLUID-FLOW; EQUATIONS; EXTENSION;
D O I
10.1142/S021820251550027X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to enrich the modeling of fluid flows, we investigate in this paper a coupling between two models dedicated to distinct regimes. More precisely, we focus on the influence of the Mach number as the low Mach case is known to induce theoretical and numerical issues in a compressible framework. A moving interface is introduced to separate a compressible model (Euler with source term) and its low Mach counterpart through relevant transmission conditions. A global steady state for the coupled problem is exhibited. Numerical simulations are then performed to highlight the influence of the coupling by means of a robust numerical strategy.
引用
收藏
页码:1045 / 1089
页数:45
相关论文
共 50 条
  • [21] Adaptive finite elements for stationary compressible flows at low Mach number
    Braack, M
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 169 - 178
  • [22] Error control and adaptivity for low-Mach-number compressible flows
    Sabanca, M
    Brenner, G
    Durst, F
    AIAA JOURNAL, 2002, 40 (11) : 2234 - 2240
  • [23] COMPUTATIONAL METHOD FOR LOW MACH NUMBER UNSTEADY COMPRESSIBLE FREE CONVECTIVE FLOWS
    FORESTER, CK
    EMERY, AF
    JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 10 (03) : 487 - 502
  • [24] LOW MACH NUMBER LIMIT OF SOME STAGGERED SCHEMES FOR COMPRESSIBLE BAROTROPIC FLOWS
    Herbin, R.
    Latche, J-C
    Saleh, K.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1039 - 1087
  • [25] Low Mach Number Limit of a Pressure Correction MAC Scheme for Compressible Barotropic Flows
    Herbin, Raphaele
    Latche, Jean-Claude
    Saleh, Khaled
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 255 - 263
  • [26] BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE FLOWS AT LOW MACH NUMBER ON TRIANGLES AND TETRAHEDRONS
    Jung, Jonathan
    Perrier, Vincent
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : A452 - A482
  • [27] A thermal model based on the lattice Boltzmann method for low Mach number compressible flows
    Toelke, Jonas
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2006, 3 (04) : 579 - 587
  • [28] Low Mach number flows and combustion
    Alazard, Thomas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) : 1186 - 1213
  • [29] New approaches of efficient and time accurate compressible CFD for unsteady low Mach number flows
    Shima, Eiji
    Kitamura, Keiichi
    50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012,
  • [30] Solutions for variable density low Mach number flows with a compressible pressure-based algorithm
    Huang Jing
    Li Ru
    He Yaling
    Qu Zhiguo
    APPLIED THERMAL ENGINEERING, 2007, 27 (11-12) : 2104 - 2112