Improving Fairness and Transparency for Artists in Music Recommender Systems

被引:6
|
作者
Dinnissen, Karlijn [1 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
关键词
Music recommender systems; Multi-sided fairness; Explainability;
D O I
10.1145/3477495.3531681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:3498 / 3498
页数:1
相关论文
共 50 条
  • [41] What Is Fair? Exploring the Artists' Perspective on the Fairness of Music Streaming Platforms
    Ferraro, Andres
    Serra, Xavier
    Bauer, Christine
    HUMAN-COMPUTER INTERACTION, INTERACT 2021, PT II, 2021, 12933 : 562 - 584
  • [42] What's in a User? Towards Personalising Transparency For Music Recommender Interfaces
    Millecamp, Martijn
    Htun, Nyi Nyi
    Conati, Cristina
    Verbert, Katrien
    UMAP'20: PROCEEDINGS OF THE 28TH ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, 2020, : 173 - 182
  • [43] Improving Grading Fairness and Transparency with Decentralized Collaborative Peer Assessment
    Alipour S.
    Elahimanesh S.
    Jahanzad S.
    Mohammadi I.
    Morassafar P.
    Neshaei S.P.
    Tefagh M.
    Proceedings of the ACM on Human-Computer Interaction, 2024, 8 (CSCW1)
  • [44] Fairness and Transparency
    Foegeding, E. Allen
    JOURNAL OF FOOD SCIENCE, 2018, 83 (01) : 3 - 3
  • [45] Improving Context-Aware Music Recommender Systems: Beyond the Pre-filtering Approach
    Pichl, Martin
    Zangelere, Eva
    Specht, Guenther
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 206 - 213
  • [46] Understanding User Perspectives on Sustainability and Fairness in Tourism Recommender Systems
    Banik, Paromita
    Banerjee, Ashmi
    Woerndl, Wolfgang
    2023 ADJUNCT PROCEEDINGS OF THE 31ST ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2023, 2023, : 241 - 248
  • [47] Feature-blind fairness in collaborative filtering recommender systems
    Borges, Rodrigo
    Stefanidis, Kostas
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (04) : 943 - 962
  • [48] Interplay between upsampling and regularization for provider fairness in recommender systems
    Ludovico Boratto
    Gianni Fenu
    Mirko Marras
    User Modeling and User-Adapted Interaction, 2021, 31 : 421 - 455
  • [49] A flexible framework for evaluating user and item fairness in recommender systems
    Yashar Deldjoo
    Vito Walter Anelli
    Hamed Zamani
    Alejandro Bellogín
    Tommaso Di Noia
    User Modeling and User-Adapted Interaction, 2021, 31 : 457 - 511
  • [50] CIKM 2021 Tutorial on Fairness of Machine Learning in Recommender Systems
    Li, Yunqi
    Ge, Yingqiang
    Zhang, Yongfeng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4857 - 4860