Biphase Cobalt-Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium-Ion Electrochemical Energy Storage

被引:26
|
作者
Shan, Xiaoqiang [1 ]
Charles, Daniel S. [1 ]
Xu, Wenqian [2 ]
Feygenson, Mikhail [3 ,4 ]
Su, Dong [5 ]
Teng, Xiaowei [1 ]
机构
[1] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA
[2] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA
[3] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37830 USA
[4] Forschungszentrum Julich, Juelich Ctr Neutron Sci, D-52425 Julich, Germany
[5] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
aqueous Na-ion storage; biphase cobalt-manganese oxide; capacitive and diffusion-limited redox capacities; in situ X-ray diffraction; pair distribution function; INTERCALATION; NANOPARTICLES; ELECTRODES; BATTERIES; SPINELS; CATHODE;
D O I
10.1002/adfm.201703266
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material is reported, comprised of a layered MnO2 center dot H2O birnessite phase and a (Co(0.83)Mn(0.13)Va(0.04))(tetra)(Co0.38Mn1.62)(octa)O-3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co-Mn-O material demonstrates an excellent storage capacity toward Na-ions in an aqueous electrolyte (121 mA h g(-1) at a scan rate of 1 mV s(-1) in the half-cell and 81 mA h g(-1) at a current density of 2 A g(-1) after 5000 cycles in full-cells), as well as high rate performance (57 mA h g(-1) a rate of 360 C). Electrokinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-performance aqueous sodium-ion battery using a hybrid electrolyte with a wide electrochemical stability window
    Shen, Yanxin
    Han, Xiaonan
    Cai, Tonghui
    Hu, Haoyu
    Li, Yanpeng
    Zhao, Lianming
    Hu, Han
    Xue, Qingzhong
    Zhao, Yi
    Zhou, Jin
    Gao, Xiuli
    Xing, Wei
    Wang, Xiaoning
    RSC ADVANCES, 2020, 10 (43) : 25496 - 25499
  • [42] Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes
    Wang, Xiaolei
    Li, Ge
    Hassan, Fathy M.
    Li, Jingde
    Fan, Xingye
    Batmaz, Rasim
    Xiao, Xingcheng
    Chen, Zhongwei
    NANO ENERGY, 2015, 15 : 746 - 754
  • [43] Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite
    Xiaoqiang Shan
    Fenghua Guo
    Daniel S. Charles
    Zachary Lebens-Higgins
    Sara Abdel Razek
    Jinpeng Wu
    Wenqian Xu
    Wanli Yang
    Katharine L. Page
    Joerg C. Neuefeind
    Mikhail Feygenson
    Louis F. J. Piper
    Xiaowei Teng
    Nature Communications, 10
  • [44] Prussian Blue Cathode Materials for Aqueous Sodium-ion Batteries: Preparation and Electrochemical Performance
    Li Yong
    He Wei-Xin
    Zheng Xin-Yue
    Yu Sheng-Lan
    Li Hai-Tong
    Li Hong-Yi
    Zhang Rong
    Wang Yu
    JOURNAL OF INORGANIC MATERIALS, 2019, 34 (04) : 365 - 372
  • [45] Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite
    Shan, Xiaoqiang
    Guo, Fenghua
    Charles, Daniel S.
    Lebens-Higgins, Zachary
    Razek, Sara Abdel
    Wu, Jinpeng
    Xu, Wenqian
    Yang, Wanli
    Page, Katharine L.
    Neuefeind, Joerg C.
    Feygenson, Mikhail
    Piper, Louis F. J.
    Teng, Xiaowei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [46] High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism
    Liu, Yang
    Qiao, Yun
    Zhang, Wuxing
    Xu, Henghui
    Li, Zhen
    Shen, Yue
    Yuan, Lixia
    Hu, Xianluo
    Dai, Xiang
    Huang, Yunhui
    NANO ENERGY, 2014, 5 : 97 - 104
  • [47] Polymerization increasing the capacitive charge storage for better rate performance: A case study of electrodes in aqueous sodium-ion capacitors
    Gu, Chengjun
    Liu, Zhihao
    Gao, Xiang
    Zhang, Qi
    Zhang, Zhanhui
    Liu, Zhitian
    Wang, Chengliang
    BATTERY ENERGY, 2022, 1 (04):
  • [48] Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries
    Shehab, Mohammad K.
    Weeraratne, K. Shamara
    Huang, Tony
    Lao, Ka Un
    El-Kaderi, Hani M.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15083 - 15091
  • [49] An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor
    Xiang, Feifei
    Zhou, Xinyi
    Yue, Xiaoqiu
    Hu, Qiang
    Zheng, Qiaoji
    Lin, Dunmin
    ELECTROCHIMICA ACTA, 2021, 379 (379)
  • [50] Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity
    Sassin, Megan B.
    Hoag, Cheyne P.
    Willis, Bradley T.
    Kucko, Nathan W.
    Rolison, Debra R.
    Long, Jeffrey W.
    NANOSCALE, 2013, 5 (04) : 1649 - 1657