NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARE SERIES

被引:2
|
作者
Blache, Regis [1 ]
机构
[1] IUFM Guadeloupe, Equipe LAMIA, F-97139 Les Abymes, Guadeloupe, France
关键词
Character sums; L-functions; Newton polygons and polytopes; TWISTED EXPONENTIAL-SUMS; ZETA-FUNCTIONS; POLYHEDRA; COHOMOLOGY;
D O I
10.1142/S1793042111004368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we precise the asymptotic behavior of Newton polygons of L-functions associated to character sums, coming from certain n variable Laurent polynomials. In order to do this, we use the free sum on convex polytopes. This operation allows the determination of the limit of generic Newton polygons for the sum Delta = Delta(1) circle plus Delta(2) when we know the limit of generic Newton polygons for each factor. To our knowledge, these are the first results concerning the asymptotic behavior of Newton polygons for multivariable polynomials when the generic Newton polygon differs from the combinatorial (Hodge) polygon associated to the polyhedron.
引用
收藏
页码:1519 / 1542
页数:24
相关论文
共 50 条
  • [41] Character sums and the series L(1,χ) with applications to real quadratic fields
    Leu, MG
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (01) : 151 - 166
  • [42] Exact Minkowski sums of polygons with holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 73 : 46 - 56
  • [43] Exact Minkowski Sums of Polygons With Holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    ALGORITHMS - ESA 2015, 2015, 9294 : 71 - 82
  • [44] Reducing character sums to Kloosterman sums
    J. B. Friedlander
    H. Iwaniec
    Mathematical Notes, 2010, 88 : 440 - 443
  • [45] Reducing character sums to Kloosterman sums
    Friedlander, J. B.
    Iwaniec, H.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 440 - 443
  • [46] ESTIMATION OF LOJASIEWICZ EXPONENTS AND NEWTON POLYGONS
    LICHTIN, B
    INVENTIONES MATHEMATICAE, 1981, 64 (03) : 417 - 429
  • [47] Erratum to: Newton polygons and curve gonalities
    Wouter Castryck
    Filip Cools
    Journal of Algebraic Combinatorics, 2012, 35 (3) : 367 - 372
  • [48] Newton Polygons for a Variant of the Kloosterman Family
    Bellovin, Rebecca
    Garthwaite, Sharon Anne
    Ozman, Ekin
    Pries, Rachel
    Williams, Cassandra
    Zhu, Hui June
    WOMEN IN NUMBERS 2: RESEARCH DIRECTIONS IN NUMBER THEORY, 2013, 606 : 47 - 63
  • [49] Higher Newton polygons and integral bases
    Guardia, Jordi
    Montes, Jesus
    Nart, Enric
    JOURNAL OF NUMBER THEORY, 2015, 147 : 549 - 589
  • [50] Variance of the spectral numbers and Newton polygons
    Brélivet, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (04): : 333 - 342