An Intelligent Diagnosis Method for Machine Fault Based on Federated Learning

被引:16
|
作者
Li, Zhinong [1 ]
Li, Zedong [1 ]
Li, Yunlong [2 ]
Tao, Junyong [3 ]
Mao, Qinghua [4 ]
Zhang, Xuhui [4 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Testing, Minist Educ, Nanchang 330063, Jiangxi, Peoples R China
[2] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[3] Natl Univ Def Technol, Lab Sci & Technol Integrated Logist Support, Changsha 410073, Peoples R China
[4] Xian Univ Sci & Technol, Shaanxi Key Lab Mine Electromech Equipment Intell, Xian 710054, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 24期
基金
中国国家自然科学基金;
关键词
federated learning; fault diagnosis; deep convolutional neural network; model fusion; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; CLASSIFICATION; AUTOENCODER;
D O I
10.3390/app112412117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In engineering, the fault data unevenly distribute and difficultly share, which causes that the existing fault diagnosis methods cannot recognize the newly added fault types. An intelligent diagnosis method for machine fault is proposed based on federated learning. Firstly, the local fault diagnosis models diagnosing the existing fault data and the newly added fault data are established by deep convolutional neural network. Then, the weight parameters of local models are fused into global model parameters by federated learning. Finally, the global model parameters are transmitted to each local model. Therefore, each local model update into a global shared model which can recognize the newly added fault types. The proposed method is verified by bearing data. Compared with the traditional model, which can only diagnose the existing fault data but cannot recognize newly added fault types, the federated fault diagnosis model fusing weight parameters can diagnose newly added faults without exchanging the data, and the accuracy is 100%. The proposed method provides an effective method to solve the poor sharing of fault data and poor generalization of fault diagnosis model for mechanical equipment.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Intelligent fault diagnosis in power systems: A comparative analysis of machine learning-based algorithms
    Venkatachalam, Yuvaraju
    Subbaiyan, Thangavel
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [42] Cross-machine intelligent fault diagnosis of gearbox based on deep learning and parameter transfer
    Han, Te
    Zhou, Taotao
    Xiang, Yongyong
    Jiang, Dongxiang
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (03):
  • [43] Best basis-based intelligent machine fault diagnosis
    Zhang, S
    Mathew, J
    Ma, L
    Sun, Y
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (02) : 357 - 370
  • [44] A Series Arc Fault Diagnosis Method Based on an Extreme Learning Machine Model
    Qi, Lichun
    Kawaguchi, Takahiro
    Hashimoto, Seiji
    PROCESSES, 2024, 12 (12)
  • [45] A new subset based deep feature learning method for intelligent fault diagnosis of bearing
    Zhang, Yuyan
    Li, Xinyu
    Gao, Liang
    Li, Peigen
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 110 : 125 - 142
  • [46] A Transient Feature Learning-Based Intelligent Fault Diagnosis Method for Planetary Gearboxes
    Qin, Bo
    Li, Zixian
    Qin, Yan
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2020, 66 (06): : 385 - 394
  • [47] Ensemble learning-based intelligent fault diagnosis method using feature partitioning
    Zhu, Yongsheng
    Zhu, Xiaoran
    Wang, Jing
    JOURNAL OF VIBROENGINEERING, 2013, 15 (03) : 1378 - 1392
  • [48] A Cross-Machine Intelligent Fault Diagnosis Method with Small and Imbalanced Data Based on the ResFCN Deep Transfer Learning Model
    Zhao, Juanru
    Yuan, Mei
    Cui, Yiwen
    Cui, Jin
    SENSORS, 2025, 25 (04)
  • [49] Intelligent Fault Diagnosis Method Based on Reliability Analysis
    Duan Rong-xing
    Tu Ji-liang
    Dong De-cun
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING, PTS 1 AND 2, 2010, : 487 - 491
  • [50] Intelligent fault diagnosis method based on dynamic fault tree analysis
    Duan, Rongxing
    Wan, Guochun
    Dong, Decun
    Journal of Computational Information Systems, 2010, 6 (03): : 949 - 957