Comparison of Data Driven Models (DDM) for Soil Moisture Retrieval using Microwave Remote Sensing Data

被引:0
|
作者
Hephi, Liauw [1 ]
See, Chai Soo [1 ]
机构
[1] Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kuching, Sarawak, Malaysia
关键词
Data Driven Modelling (DDM); Neural Network Model; Fuzzy-Rule Model; Bayesian Model; Multiple Regression Model and Support Vector Machines (SVM); Root-Mean-Square-Error (RMSE); LAND;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to explore the use of various DDM methods for soil moisture retrieval, identifying the advantages and disadvantages of each, compare and evaluate the results for further study. The study looks into the advantages and disadvantages of each DDM method, summarizing the Root-Mean-Square-Error (RMSE) to identify soil moisture condition. In this study, Neural Network Model, Fuzzy-Rule Model, Bayesian Model, Multiple Regression Model and Support Vector Machines (SVM) were reviewed. The Neural Network model performed better compared with other models, proven with the lowest number of RMSE. The SVM model also showed high potential, whereas the Bayesian, Multiple Regression and Fuzzy-Rule Based models showed higher RMSE values, which indicate higher difference in accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data
    Lakhankar, Tarendra
    Ghedira, Hosni
    Temimi, Marouane
    Sengupta, Manajit
    Khanbilvardi, Reza
    Blake, Reginald
    REMOTE SENSING, 2009, 1 (01) : 3 - 21
  • [32] A new approach for surface soil moisture retrieving using two-polarized microwave remote sensing data
    Yu, F. (yufan@casm.ac.cn), 1600, Editorial Board of Medical Journal of Wuhan University (39):
  • [33] Disaggregation of microwave remote sensing data for estimating near-surface soil moisture using a neural network
    Crosson, WL
    Laymon, CA
    Schamschula, MP
    16TH CONFERENCE ON HYDROLOGY, 2002, : 85 - 90
  • [34] Downscaling Passive Microwave Soil Moisture Estimates Using Stand-Alone Optical Remote Sensing Data
    Zhong, Yanmei
    Wei, Zushuai
    Miao, Linguang
    Wang, Yanwen
    Walker, Jeffrey P.
    Colliander, Andreas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [35] Multispectral and Microwave Remote Sensing Models to Survey Soil Moisture and Salinity
    Periasamy, Shoba
    Shanmugam, Ramakrishnan S.
    LAND DEGRADATION & DEVELOPMENT, 2017, 28 (04) : 1412 - 1425
  • [36] Remote sensing of bare surface soil moisture using EMAC/ESAR data
    Su, Z
    Troch, PA
    DeTroch, FP
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (10) : 2105 - 2124
  • [37] Computational methods to retrieve soil moisture using remote sensing data: A review
    Inoubli, Raja
    Constantino-Recillas, Daniel Enrique
    Monsivais-Huertero, Alejandro
    Farah, Lilia Bennaceur
    Farah, Imed Riadh
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 77 - 82
  • [38] Remote sensing of bare surface soil moisture using EMAC/ESAR data
    Su, Z
    Troch, PA
    De Troch, FP
    EMAC 94/95 FINAL RESULTS - WORKSHOP PROCEEDINGS, 1997, (136): : 53 - 70
  • [39] Estimating soil moisture using remote sensing data: A machine learning approach
    Ahmad, Sajjad
    Kalra, Ajay
    Stephen, Haroon
    ADVANCES IN WATER RESOURCES, 2010, 33 (01) : 69 - 80
  • [40] ESTIMATING SOIL MOISTURE USING OPTICAL AND RADAR SATELLITE REMOTE SENSING DATA
    Natali, Stefano
    Pellegrini, Loreto
    Rossi, Gianluigi
    Giordano, Ludovica
    Iannetta, Massimo
    Schino, Gabriele
    Marini, Alberto
    Nabil, Gasmi
    DESERTIFICATION AND RISK ANALYSIS USING HIGH AND MEDIUM RESOLUTION SATELLITE DATA, 2009, : 105 - +