首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Periodic orbits in magnetic fields and Ricci curvature of Lagrangian systems
被引:29
|
作者
:
Bahri, A
论文数:
0
引用数:
0
h-index:
0
机构:
Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
Bahri, A
[
1
]
Taimanov, IA
论文数:
0
引用数:
0
h-index:
0
机构:
Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
Taimanov, IA
机构
:
[1]
Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2]
Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
来源
:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
|
1998年
/ 350卷
/ 07期
关键词
:
D O I
:
10.1090/S0002-9947-98-02108-4
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
A Lagrangian system describing a motion of a charged particle on a Riemannian manifold is studied. For this flow an analog of a Ricci curvature is introduced, and for Ricci positively curved flows the existence of periodic orbits is proved.
引用
收藏
页码:2697 / 2717
页数:21
相关论文
共 50 条
[21]
Gradient Kahler-Ricci solitons and periodic orbits
Cao, HD
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Coll Stn, College Stn, TX 77843 USA
Texas A&M Univ, Coll Stn, College Stn, TX 77843 USA
Cao, HD
Hamilton, RS
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Coll Stn, College Stn, TX 77843 USA
Hamilton, RS
COMMUNICATIONS IN ANALYSIS AND GEOMETRY,
2000,
8
(03)
: 517
-
529
[22]
CONCAVITY OF THE LAGRANGIAN FOR QUASI-PERIODIC ORBITS
MATHER, JN
论文数:
0
引用数:
0
h-index:
0
MATHER, JN
COMMENTARII MATHEMATICI HELVETICI,
1982,
57
(03)
: 356
-
376
[23]
-manifolds with positive Ricci curvature and many isolated singular orbits
Wraith, David J.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Univ Ireland Manyooth, Dept Math, Maynooth, Kildare, Ireland
Natl Univ Ireland Manyooth, Dept Math, Maynooth, Kildare, Ireland
Wraith, David J.
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY,
2014,
45
(04)
: 319
-
335
[24]
HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS
Wu SHAOPING Departmentof Mathematics
论文数:
0
引用数:
0
h-index:
0
Wu SHAOPING Departmentof Mathematics
Chinese Annals of Mathematics,
1996,
(02)
: 245
-
256
[25]
Homoclinic orbits for Lagrangian systems
Wu, SP
论文数:
0
引用数:
0
h-index:
0
机构:
ZHEJIANG UNIV,DEPT MATH,HANGZHOU 310027,PEOPLES R CHINA
ZHEJIANG UNIV,DEPT MATH,HANGZHOU 310027,PEOPLES R CHINA
Wu, SP
CHINESE ANNALS OF MATHEMATICS SERIES B,
1996,
17
(02)
: 245
-
256
[26]
On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms
Chen, BY
论文数:
0
引用数:
0
h-index:
0
机构:
Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
Chen, BY
ARCHIV DER MATHEMATIK,
2000,
74
(02)
: 154
-
160
[27]
On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms
B.-Y. Chen
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Mathematics,
B.-Y. Chen
Archiv der Mathematik,
2000,
74
: 154
-
160
[28]
Positive Ricci Curvature and the Length of a Shortest Periodic Geodesic
Rotman, Regina
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Rotman, Regina
JOURNAL OF GEOMETRIC ANALYSIS,
2024,
34
(06)
[29]
ON THE EXISTENCE OF PERIODIC ORBITS FOR MAGNETIC SYSTEMS ON THE TWO-SPHERE
Benedetti, Gabriele
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Munster, Inst Math, D-48149 Munster, Germany
Univ Munster, Inst Math, D-48149 Munster, Germany
Benedetti, Gabriele
Zehmisch, Kai
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Munster, Inst Math, D-48149 Munster, Germany
Univ Munster, Inst Math, D-48149 Munster, Germany
Zehmisch, Kai
JOURNAL OF MODERN DYNAMICS,
2015,
9
: 141
-
146
[30]
PARALLEL VECTOR FIELDS AND PERIODIC ORBITS
SCHWARTZ.S
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV RHODE ISLAND,DEPT MATH,KINGSTON,RI 02881
UNIV RHODE ISLAND,DEPT MATH,KINGSTON,RI 02881
SCHWARTZ.S
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1974,
44
(01)
: 167
-
168
←
1
2
3
4
5
→