Remote Sensing Image Scene Classification via Self-Supervised Learning and Knowledge Distillation

被引:9
|
作者
Zhao, Yibo [1 ]
Liu, Jianjun [1 ]
Yang, Jinlong [1 ]
Wu, Zebin [2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing images; scene classification; knowledge distillation; attention; feature fusion; self-supervised learning;
D O I
10.3390/rs14194813
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main challenges of remote sensing image scene classification are extracting discriminative features and making full use of the training data. The current mainstream deep learning methods usually only use the hard labels of the samples, ignoring the potential soft labels and natural labels. Self-supervised learning can take full advantage of natural labels. However, it is difficult to train a self-supervised network due to the limitations of the dataset and computing resources. We propose a self-supervised knowledge distillation network (SSKDNet) to solve the aforementioned challenges. Specifically, the feature maps of the backbone are used as supervision signals, and the branch learns to restore the low-level feature maps after background masking and shuffling. The "dark knowledge" of the branch is transferred to the backbone through knowledge distillation (KD). The backbone and branch are optimized together in the KD process without independent pre-training. Moreover, we propose a feature fusion module to fuse feature maps dynamically. In general, SSKDNet can make full use of soft labels and has excellent discriminative feature extraction capabilities. Experimental results conducted on three datasets demonstrate the effectiveness of the proposed approach.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Collaborative Consistent Knowledge Distillation Framework for Remote Sensing Image Scene Classification Network
    Xing, Shiyi
    Xing, Jinsheng
    Ju, Jianguo
    Hou, Qingshan
    Ding, Xiurui
    REMOTE SENSING, 2022, 14 (20)
  • [32] Self-supervised knowledge distillation in counterfactual learning for VQA
    Bi, Yandong
    Jiang, Huajie
    Zhang, Hanfu
    Hu, Yongli
    Yin, Baocai
    PATTERN RECOGNITION LETTERS, 2024, 177 : 33 - 39
  • [33] Self-supervised knowledge distillation for complementary label learning
    Liu, Jiabin
    Li, Biao
    Lei, Minglong
    Shi, Yong
    NEURAL NETWORKS, 2022, 155 : 318 - 327
  • [34] Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
    Stojnic, Vladan
    Risojevic, Vladimir
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1182 - 1191
  • [35] Lightweight remote sensing scene classification based on knowledge distillation
    Zhang, Chong-Yang
    Wang, Bin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2024, 43 (05) : 684 - 695
  • [36] Training Small Networks for Scene Classification of Remote Sensing Images via Knowledge Distillation
    Chen, Guanzhou
    Zhang, Xiaodong
    Tan, Xiaoliang
    Cheng, Yufeng
    Dai, Fan
    Zhu, Kun
    Gong, Yuanfu
    Wang, Qing
    REMOTE SENSING, 2018, 10 (05)
  • [37] Multimodal self-supervised learning for remote sensing data land cover classification
    Xue, Zhixiang
    Yang, Guopeng
    Yu, Xuchu
    Yu, Anzhu
    Guo, Yinggang
    Liu, Bing
    Zhou, Jianan
    PATTERN RECOGNITION, 2025, 157
  • [38] Remote Sensing Image Scene Classification with Noisy Label Distillation
    Zhang, Rui
    Chen, Zhenghao
    Zhang, Sanxing
    Song, Fei
    Zhang, Gang
    Zhou, Quancheng
    Lei, Tao
    REMOTE SENSING, 2020, 12 (15)
  • [39] Class-Aware Self-Distillation for Remote Sensing Image Scene Classification
    Wu, Bin
    Hao, Siyuan
    Wang, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2173 - 2188
  • [40] Art style classification via self-supervised dual-teacher knowledge distillation
    Luo, Mei
    Liu, Li
    Lu, Yue
    Suen, Ching Y.
    APPLIED SOFT COMPUTING, 2025, 174