Predicting Arbitrary-Oriented Objects as Points in Remote Sensing Images

被引:12
|
作者
Wang, Jian [1 ]
Yang, Le [1 ]
Li, Fan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
object detection; remote sensing image; anchor free; oriented bounding boxes; deformable convolution; SHIP DETECTION;
D O I
10.3390/rs13183731
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To detect rotated objects in remote sensing images, researchers have proposed a series of arbitrary-oriented object detection methods, which place multiple anchors with different angles, scales, and aspect ratios on the images. However, a major difference between remote sensing images and natural images is the small probability of overlap between objects in the same category, so the anchor-based design can introduce much redundancy during the detection process. In this paper, we convert the detection problem to a center point prediction problem, where the pre-defined anchors can be discarded. By directly predicting the center point, orientation, and corresponding height and width of the object, our methods can simplify the design of the model and reduce the computations related to anchors. In order to further fuse the multi-level features and get accurate object centers, a deformable feature pyramid network is proposed, to detect objects under complex backgrounds and various orientations of rotated objects. Experiments and analysis on two remote sensing datasets, DOTA and HRSC2016, demonstrate the effectiveness of our approach. Our best model, equipped with Deformable-FPN, achieved 74.75% mAP on DOTA and 96.59% on HRSC2016 with a single-stage model, single-scale training, and testing. By detecting arbitrarily oriented objects from their centers, the proposed model performs competitively against oriented anchor-based methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Finding Arbitrary-Oriented Ships From Remote Sensing Images Using Corner Detection
    Chen, Jiajie
    Xie, Fengying
    Lu, Yuanyao
    Jiang, Zhiguo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1712 - 1716
  • [12] An Arbitrary-Oriented Object Detector Based on Variant Gaussian Label in Remote Sensing Images
    Zhao, Tingyu
    Liu, Nanqing
    Celik, Turgay
    Li, Heng-Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [13] Arbitrary-Oriented Dense Object Detection in Remote Sensing Imagery
    Chen Yingxue
    Ding Wenrui
    Li Hongguang
    Wang Yufeng
    Liu Shuo
    Xiao, Zhifeng
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 436 - 440
  • [14] Vector Decomposition-Based Arbitrary-Oriented Object Detection for Optical Remote Sensing Images
    Zhou, Kexue
    Zhang, Min
    Dong, Youqiang
    Tan, Jinlin
    Zhao, Shaobo
    Wang, Hai
    REMOTE SENSING, 2023, 15 (19)
  • [15] Learning Critical Features for Arbitrary-Oriented Object Detection in Remote-Sensing Optical Images
    Sun, Peng
    Zheng, Yongbin
    Wu, Wenqi
    Xu, Wanying
    Bai, Shengjian
    Lu, Xiaoping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [16] Arbitrary-oriented ship detection based on Kullback-Leibler divergence regression in remote sensing images
    Chen, Yantong
    Wang, Jialiang
    Zhang, Yanyan
    Liu, Yang
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3243 - 3255
  • [17] An Improved Attention-Guided Network for Arbitrary-Oriented Ship Detection in Optical Remote Sensing Images
    Qin, Chuan
    Wang, Xueqian
    Li, Gang
    He, You
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [18] Arbitrary-oriented ship detection based on Kullback-Leibler divergence regression in remote sensing images
    Yantong Chen
    Jialiang Wang
    Yanyan Zhang
    Yang Liu
    Earth Science Informatics, 2023, 16 : 3243 - 3255
  • [19] CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images
    Ming, Qi
    Miao, Lingjuan
    Zhou, Zhiqiang
    Dong, Yunpeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [20] CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images
    Ming, Qi
    Miao, Lingjuan
    Zhou, Zhiqiang
    Dong, Yunpeng
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60