Prediction and model-assisted estimation of diameter distributions using Norwegian national forest inventory and airborne laser scanning data

被引:7
|
作者
Raty, Janne [1 ]
Astrup, Rasmus [1 ]
Breidenbach, Johannes [1 ]
机构
[1] Norwegian Inst Bioecon Res NIBIO, Div Forest & Forest Resources, Natl Forest Inventory, Hogskoleveien 8, N-1433 As, Norway
关键词
generalized linear models; linear mixed-effects models; most similar neighbor approach; number of stems; systematic sampling; NEIGHBOR; LIDAR;
D O I
10.1139/cjfr-2020-0440
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Diameter at breast height (DBH) distributions offer valuable information for operational and strategic forest management decisions. We predicted DBH distributions using Norwegian national forest inventory and airborne laser scanning data and compared the predictive performances of linear mixed-effects (PPM), generalized linear-mixed (GLM), and k nearest-neighbor (NN) models. While GLM resulted in smaller prediction errors than PPM, both were clearly outperformed by NN. We therefore studied the ability of the NN model to improve the precision of stem frequency estimates by DBH classes in the 8.7 Mha study area using a model-assisted (MA) estimator suitable for systematic sampling. MA estimates yielded greater than or approximately equal efficiencies as direct estimates using field data only. The relative efficiencies (REs) associated with the MA estimates ranged between 0.95-1.47 and 0.96-1.67 for 2 and 6 cm DBH class widths, respectively, when dominant tree species were assumed to be known. The use of a predicted tree species map, instead of the observed information, decreased the REs by up to 10%.
引用
收藏
页码:1521 / 1533
页数:13
相关论文
共 50 条
  • [11] Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data
    Hauglin, Marius
    Rahlf, Johannes
    Schumacher, Johannes
    Astrup, Rasmus
    Breidenbach, Johannes
    FOREST ECOSYSTEMS, 2021, 8 (01)
  • [12] Advances in Forest Inventory Using Airborne Laser Scanning
    Hyyppa, Juha
    Yu, Xiaowei
    Hyyppa, Hannu
    Vastaranta, Mikko
    Holopainen, Markus
    Kukko, Antero
    Kaartinen, Harri
    Jaakkola, Anttoni
    Vaaja, Matti
    Koskinen, Jarkko
    Alho, Petteri
    REMOTE SENSING, 2012, 4 (05) : 1190 - 1207
  • [13] Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data
    Marius Hauglin
    Johannes Rahlf
    Johannes Schumacher
    Rasmus Astrup
    Johannes Breidenbach
    ForestEcosystems, 2021, 8 (04) : 872 - 886
  • [14] Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data
    Ene, Liviu Theodor
    Naesset, Erik
    Gobakken, Terje
    Bollandsas, Ole Martin
    Mauya, Ernest William
    Zahabu, Eliakimu
    REMOTE SENSING OF ENVIRONMENT, 2017, 188 : 106 - 117
  • [15] Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data
    Hollaus, M.
    Dorigo, W.
    Wagner, W.
    Schadauer, K.
    Hoefle, B.
    Maier, B.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (19) : 5159 - 5175
  • [16] A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory
    Nilsson, Mats
    Nordkvist, Karin
    Jonzen, Jonas
    Lindgren, Nils
    Axensten, Peder
    Wallerman, Jorgen
    Egberth, Mikael
    Larsson, Svante
    Nilsson, Liselott
    Eriksson, Johan
    Olsson, Hakan
    REMOTE SENSING OF ENVIRONMENT, 2017, 194 : 447 - 454
  • [17] Predicting stand age in managed forests using National Forest Inventory field data and airborne laser scanning
    Matti Maltamo
    Hermanni Kinnunen
    Annika Kangas
    Lauri Korhonen
    ForestEcosystems, 2020, 7 (03) : 579 - 589
  • [18] Predicting stand age in managed forests using National Forest Inventory field data and airborne laser scanning
    Maltamo, Matti
    Kinnunen, Hermanni
    Kangas, Annika
    Korhonen, Lauri
    FOREST ECOSYSTEMS, 2020, 7 (01)
  • [19] Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory
    Hou, Zhengyang
    Yuan, Keyan
    Stahl, Goran
    McRoberts, Ronald E.
    Kangas, Annika
    Tang, Hao
    Jiang, Jingyi
    Meng, Jinghui
    Xu, Qing
    Li, Zengyuan
    REMOTE SENSING OF ENVIRONMENT, 2023, 299
  • [20] The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data
    Naesset, Erik
    Bollandsas, Ole Martin
    Gobakken, Terje
    Solberg, Svein
    McRoberts, Ronald E.
    REMOTE SENSING OF ENVIRONMENT, 2015, 168 : 252 - 264