Duhamel's formula for time-fractional Schrodinger equations

被引:30
|
作者
Zhou, Yong [1 ]
Peng, Li [1 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; Duhamel's formula; Schrodinger equations;
D O I
10.1002/mma.5222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the time-fractional order Schrodinger equation that is a fundamental equation in fractional quantum mechanics. By using the spectral theorem, we prove Duhamel's formula and give some properties of solution operators, which can be used to study the local existence and the global existence of time-fractional Schrodinger equations on a Hilbert space.
引用
收藏
页码:8345 / 8349
页数:5
相关论文
共 50 条
  • [31] Series solutions for nonlinear time-fractional Schrodinger equations: Comparisons between conformable and Caputo derivatives
    Oqielat, Moa'ath N.
    El-Ajou, Ahmad
    Al-Zhour, Zeyad
    Alkhasawneh, Raed
    Alrabaiah, Hussam
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2101 - 2114
  • [32] UNCONDITIONALLY CONVERGENT L1-GALERKIN FEMS FOR NONLINEAR TIME-FRACTIONAL SCHRODINGER EQUATIONS
    Li, Dongfang
    Wang, Jilu
    Zhang, Jiwei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A3067 - A3088
  • [33] Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrodinger equations
    Yang, Yin
    Wang, Jindi
    Zhang, Shangyou
    Tohidi, Emran
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387
  • [34] A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time-fractional derivative
    Camilli, Fabio
    De Maio, Raul
    Iacomini, Elisa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1019 - 1032
  • [35] On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations
    Ashurov, Ravshan
    Fayziev, Yusuf
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [36] Evaluation of time-fractional Fisher's equations with the help of analytical methods
    Zidan, Ahmed M.
    Khan, Adnan
    Shah, Rasool
    Alaoui, Mohammed Kbiri
    Weera, Wajaree
    AIMS MATHEMATICS, 2022, 7 (10): : 18746 - 18766
  • [37] A parareal method for time-fractional differential equations
    Xu, Qinwu
    Hesthaven, Jan S.
    Chen, Feng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 173 - 183
  • [38] The backward problem for time-fractional evolution equations
    Chorfi, S. E.
    Maniar, L.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2024, 103 (12) : 2194 - 2212
  • [39] Variational formulation of time-fractional parabolic equations
    Karkulik, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 3929 - 3938
  • [40] ON NONAUTONOMOUS EVOLUTION EQUATIONS WITH A TIME-FRACTIONAL ATTENUATION
    Mahdi, Achache
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (04) : 385 - 406