Minimax Estimation of Information Measures

被引:0
|
作者
Jiao, Jiantao [1 ]
Venkat, Kartik [1 ]
Han, Yanjun [2 ]
Weissman, Tsachy [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Tsinghua Univ, Beijing, Peoples R China
关键词
ENTROPY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a general methodology for the construction and analysis of minimax estimators for functionals of discrete distributions, where the support size 5 is unknown and may he comparable to the number of observations n. We illustrate the merit of our approach by thoroughly analyzing non-asymptotically the performance of the resulting schemes for estimating two important information measures: the entropy H (P) = Sigma(S)(i=1) -p(i) In p(i) and F-alpha (P) Sigma(S)(i=1) p(i)(alpha), alpha > 0. We obtain the minimax L-2 risks for estimating these functionals up to a universal constant. In particular, we demonstrate that our estimator achieves the optimal sample complexity n >> S/ In S for entropy estimation. We also demonstrate that the sample complexity for estimating F-alpha(P), 0 < alpha < perpendicular to is n >> S-1/alpha/In S, which can he achieved by our estimator and not by the popular plug-in Maximum Likelihood Estimator (MLE). For I < alpha < 3/2, we show the minimax L2 rate for estimating F-alpha(P) is (n In n) -2((alpha-1)) regardless of the support size, while the exact L-2 rate for the MLE is n(-2(alpha - 1)). For all the above cases, the behavior of the minimax rate-optimal estimators with a samples is essentially that of the MLE with o In n samples. Finally, we highlight the practical advantages of our schemes for the estimation of entropy and nmtual information.
引用
收藏
页码:2296 / 2300
页数:5
相关论文
共 50 条
  • [1] A problem of minimax estimation with directional information
    Ferguson, TS
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 205 - 211
  • [2] Information measures of kernel estimation
    Beheshti, Neshat
    Racine, Jeffrey S.
    Soofi, Ehsan S.
    ECONOMETRIC REVIEWS, 2019, 38 (01) : 47 - 68
  • [3] Universal estimation of information measures
    Verdú, S
    PROCEEDINGS OF THE IEEE ITSOC INFORMATION THEORY WORKSHOP 2005 ON CODING AND COMPLEXITY, 2005, : 232 - 232
  • [4] Minimax Estimation of Quantum States Based on the Latent Information Priors
    Koyama, Takayuki
    Matsuda, Takeru
    Komaki, Fumiyasu
    ENTROPY, 2017, 19 (11):
  • [5] ON MINIMAX CONTROL AND ESTIMATION STRATEGIES UNDER INCOMPLETE INFORMATION.
    Kurzhanskii, A.B.
    1600, (04):
  • [6] ON MINIMAX ESTIMATION IN THE PRESENCE OF SIDE INFORMATION ABOUT REMOTE DATA
    AHLSWEDE, R
    BURNASHEV, MV
    ANNALS OF STATISTICS, 1990, 18 (01): : 141 - 171
  • [7] Fuzzy prior information and minimax estimation in the linear regression model
    Bernhard F. Arnold
    Peter Stahlecker
    Statistical Papers, 1997, 38 : 377 - 391
  • [8] Minimax Filtering Regret via Relations Between Information and Estimation
    No, Albert
    Weissman, Tsachy
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 444 - 448
  • [9] Minimax Filtering Regret via Relations Between Information and Estimation
    No, Albert
    Weissman, Tsachy
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 4832 - 4847
  • [10] Fuzzy prior information and minimax estimation in the linear regression model
    Arnold, BF
    Stahlecker, P
    STATISTICAL PAPERS, 1997, 38 (04) : 377 - 391