A remark on the critical speed for vortex nucleation in the nonlinear Schrodinger equation

被引:28
|
作者
Rica, S
机构
[1] CNRS, Lab Phys Stat, F-75231 Paris 05, France
[2] Univ Paris 06, Lab Phys Stat, F-75231 Paris, France
[3] Univ Paris 07, Lab Phys Stat, F-75231 Paris 05, France
来源
PHYSICA D | 2001年 / 148卷 / 3-4期
关键词
superfluidity; vortex nucleation; transonic transition; nonlinear Schrodinger equation;
D O I
10.1016/S0167-2789(00)00168-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The critical speed for the nucleation of quantized vortices in the nonlinear Schrodinger equation (NLS) for a flow around a disk in two spatial dimensions is discussed in this paper. This problem is closely related to a compressible flow around a disk. The flow is computed via a Janzen-Rayleigh expansion for low Mach number. The calculation leads to an estimate for the critical Mach number M-c = 0.36969(7)... (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 50 条
  • [21] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    Xu Si-Liu
    Liang Jian-Chu
    Li Zhong-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1105 - 1110
  • [22] Vortex and cluster solitons in nonlocal nonlinear fractional Schrodinger equation
    Wang, Qing
    Liang, Guo
    JOURNAL OF OPTICS, 2020, 22 (05)
  • [23] Elementary vortex filament model of the discrete nonlinear Schrodinger equation
    Nakayama, Kazuaki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (07)
  • [24] Standing waves for a gauged nonlinear Schrodinger equation with a vortex point
    Jiang, Yongsheng
    Pomponio, Alessio
    Ruiz, David
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)
  • [25] A REMARK ON THE ATTAINABLE SET OF THE SCHRODINGER EQUATION
    Lampart, Jonas
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 461 - 469
  • [26] A remark on global well-posedness of the derivative nonlinear Schrodinger equation on the circle
    Mosincat, Razvan
    Oh, Tadahiro
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 837 - 841
  • [27] A remark about the justification of the nonlinear Schrodinger equation in quadratic spatially periodic media
    Blank, Carsten
    Bruckner, Martina Chirilus
    Chong, Christopher
    Lescarret, Vincent
    Schneider, Guido
    Uecker, Hannes
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (03): : 554 - 557
  • [28] Remark on the analytic smoothing for the Schrodinger equation
    Morimoto, Y
    Robbiano, L
    Zuily, C
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2000, 49 (04) : 1563 - 1579
  • [29] Remark on well-posedness for the fourth order nonlinear Schrodinger type equation
    Segata, JI
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3559 - 3568
  • [30] Blowup in the nonlinear Schrodinger equation near critical dimension
    Rottschäfer, V
    Kaper, TJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) : 517 - 549