Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

被引:18
|
作者
Zhang, Yuanyuan [1 ,2 ]
Ma, Yongchao [1 ,2 ]
Shin, Insoo [1 ,2 ]
Jung, Yun Kyung [3 ]
Lee, Bo Ram [2 ]
Wu, Sangwook [1 ,2 ]
Jeong, Jung Hyun [2 ]
Lee, Byoung Hoon [4 ]
Kim, Joo Hyun [5 ]
Kim, Kwang Ho [1 ]
Park, Sung Heum [1 ,2 ]
机构
[1] Pusan Natl Univ, Hybrid Interface Mat Global Frontier Res Grp, Busan 608737, South Korea
[2] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[3] Inje Univ, Dept Biomed Engn, Gimhae 50834, South Korea
[4] Ewha Womans Univ, Div Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Pukyong Natl Univ, Dept Polymer Engn, Busan 608739, South Korea
基金
新加坡国家研究基金会;
关键词
Pb(OAc)(2); top and bottom ways; high efficiency; long-term stability; perovskite solar cells; PERFORMANCE; PEDOTPSS; STABILITY; LAYER; FILMS;
D O I
10.1021/acsami.9b19691
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High power conversion efficiency (PCE) and long-term stability are inevitable issues faced in practical device applications of perovskite solar cells. In this paper, significant enhancements in the device efficiency and stability are achieved by using a surface-active lead acetate (Pb(OAc)(2)) at the top or bottom of CH3NH3PbI3 (MAPbI(3))-based perovskite. When a saturated Pb(OAc)(2) solution is introduced on the top of the MAPbI(3) perovskite precursor, the OAc- in Pb(OAc)(2) participates in lattice restructuring of MAPbI(3) to form MAPbI(3-x)(OAc)(x), thereby producing a high-quality perovskite film with high crystallinity, large grain sizes, and uniform and pinhole-free morphology. Moreover, when Pb(OAc)(2) solution is mixed in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) solution in the bottom way, the OAC(-) in Pb(OAc)(2) improves the water resistance of PEDOT-PSS. As the OAc- easily bonds with the Pb2+, the deposition of MAPbI(3) precursor onto the Pb(OAc)(2) mixed with PEDOT-PSS results in a reduction of the uncoordinated Pb, leading to strong stabilization of the perovskite layer. Both the top- and bottom-treated devices exhibit enhanced PCE values of 18.93% and 18.28%, respectively, compared to the conventional device with a PCE of 16.47%, which originates from decreased trap sites and reduced energy barriers. In particular, the bottom-treated device exhibits long-term stability, with more than 84% of its initial PCE over 800 h in an ambient environment.
引用
收藏
页码:7186 / 7197
页数:12
相关论文
共 50 条
  • [41] Novel C3N4-Assisted Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells
    Shi, Linxing
    Yuan, Haoyang
    Zhang, Yuanyuan
    Sun, Xianggang
    Duan, Liangsheng
    Li, Qile
    Huang, Zengguang
    Ban, Xinxin
    Zhang, DongEn
    LANGMUIR, 2022, 38 (40) : 12390 - 12398
  • [42] Solvent Engineering Using a Volatile Solid for Highly Efficient and Stable Perovskite Solar Cells
    Wu, Guohua
    Li, Hua
    Cui, Jian
    Zhang, Yaohong
    Olthof, Selina
    Chen, Shuai
    Liu, Zhike
    Wang, Dapeng
    Liu, Shengzhong
    ADVANCED SCIENCE, 2020, 7 (10)
  • [43] Spatial Conformation Engineering of Aromatic Ketones for Highly Efficient and Stable Perovskite Solar Cells
    Jiang, Xiaoqing
    Zhu, Lina
    Zhang, Bingqian
    Zheng, Likai
    Wang, Linqin
    Li, Pingping
    Wang, Minhuan
    Yang, Guangyue
    Dong, Kaiwen
    Li, Suying
    Liu, Shiwei
    Yin, Yanfeng
    Wang, Haiyuan
    Zakeeruddin, Shaik. M.
    Pang, Shuping
    Sun, Licheng
    Gratzel, Michael
    Guo, Xin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (50) : 34833 - 34841
  • [44] Spray-assisted Passivation Strategy for Highly Efficient and Stable Perovskite Solar Cells
    Sahani, Rishabh
    Kumar, Neetesh
    Lai, Cheng-Yu
    Radu, Daniela R.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [45] Efficient and stable perovskite solar cells doped by cesium acetate
    Chen, Liqiang
    Wu, Jihuai
    Li, Guodong
    Wang, Shibo
    Wang, Chunyan
    Zhu, Sijia
    Chen, Xia
    Tan, Lina
    Du, Yitian
    Sun, Weihai
    Lan, Zhang
    SOLAR ENERGY, 2021, 230 : 979 - 985
  • [46] Interface modification by formamidine acetate for efficient perovskite solar cells
    Pan, Weichun
    Lin, Jianming
    Wu, Jihuai
    Rong, Bin
    Zhang, Xinpeng
    Chen, Qi
    Zhang, Meng
    Wang, Shibo
    Sun, Weihai
    Wang, Xiaobing
    Lan, Zhang
    SOLAR ENERGY, 2022, 232 : 304 - 311
  • [47] Hetero-perovskite engineering for stable and efficient perovskite solar cells
    Cheng, Xiaohua
    Han, Ying
    Cui, Bin-Bin
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (14) : 3304 - 3323
  • [48] Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells
    Song, Dandan
    Wei, Dong
    Cui, Peng
    Li, Meicheng
    Duan, Zhiqiang
    Wang, Tianyue
    Ji, Jun
    Li, Yaoyao
    Mbengue, Joseph Michel
    Li, Yingfeng
    He, Yue
    Trevor, Mwenya
    Park, Nam-Gyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) : 6091 - 6097
  • [49] Lead (Pb) management in the entire life cycle of highly efficient and stable perovskite solar cells
    Liu, Kai
    Hu, Tianxiang
    Cai, Zenghua
    Liu, Fengcai
    Rafique, Saqib
    Li, Xiaoguo
    Deng, Liangliang
    Li, Chongyuan
    Wang, Yanyan
    Guo, Qiang
    Yue, Xiaofei
    Wang, Jiao
    Yang, Yingguo
    Cong, Chunxiao
    Chen, Shiyou
    Zhang, Jia
    Yu, Anran
    Zhan, Yiqiang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) : 5576 - 5587
  • [50] Interface engineering for achieving efficient and stable perovskite solar cells by Bphen-fullerene dimer
    Yu, Xuemei
    Zhou, Qian
    Zheng, Tian
    Peng, Rufang
    Fan, Bing
    Fan, Lisheng
    Jin, Bo
    CHEMICAL ENGINEERING JOURNAL, 2023, 452