Maps of surface groups to finite groups with no simple loops in the kernel

被引:2
|
作者
Livingston, C [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
D O I
10.1142/S021821650000061X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-g denote the closed orientable surface of genus g. What is the least order finite group, G(g), for which there is a homomorphism psi: pi (1)(F-g) --> G(g) so that no nontrivial simple closed curve on F-g represents an element in Ker(psi)? For the torus it is easily seen that G(1) = Z(2) x Z(2) suffices. We prove here that G(2) is a group of order 32 and that an upper bound for the order of G(g) is given by g(2g+1). The previously known upper bound was greater than 2(g22g).
引用
收藏
页码:1029 / 1036
页数:8
相关论文
共 50 条
  • [31] ENDOMORPHISM KERNEL PROPERTY FOR FINITE GROUPS
    Ghumashyan, Heghine
    Gurican, Jaroslav
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 347 - 358
  • [32] IMAGES OF WORD MAPS IN ALMOST SIMPLE GROUPS AND QUASISIMPLE GROUPS
    Levy, Matthew
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (01) : 47 - 58
  • [33] FINITE SIMPLE-GROUPS AND FINITE PRIMITIVE PERMUTATION-GROUPS
    PRAEGER, CE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (03) : 355 - 365
  • [34] GROUPS WHICH ARE PRODUCTS OF FINITE SIMPLE-GROUPS
    WALLS, GL
    ARCHIV DER MATHEMATIK, 1988, 50 (01) : 1 - 4
  • [35] Finite simple 3′-groups are cyclic or Suzuki groups
    Toborg, Imke
    Waldecker, Rebecca
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 301 - 312
  • [36] Periodic Groups Saturated with Finite Simple Symplectic Groups
    Wang, Zh.
    Guo, W.
    Lytkina, D. V.
    Mazurov, V. D.
    ALGEBRA AND LOGIC, 2024, 63 (02) : 98 - 104
  • [37] On finite groups isospectral to simple symplectic and orthogonal groups
    A. V. Vasil’ev
    M. A. Grechkoseeva
    V. D. Mazurov
    Siberian Mathematical Journal, 2009, 50 : 965 - 981
  • [38] On the automorphism groups of Cayley graphs of finite simple groups
    Fang, XG
    Praeger, CE
    Wang, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 563 - 578
  • [39] THIN FINITE SIMPLE GROUPS
    ASCHBACHER, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (03) : 484 - 484
  • [40] DETERMINING FINITE SIMPLE GROUPS
    ASCHBACHER, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A522 - A522