Maps of surface groups to finite groups with no simple loops in the kernel

被引:2
|
作者
Livingston, C [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
D O I
10.1142/S021821650000061X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-g denote the closed orientable surface of genus g. What is the least order finite group, G(g), for which there is a homomorphism psi: pi (1)(F-g) --> G(g) so that no nontrivial simple closed curve on F-g represents an element in Ker(psi)? For the torus it is easily seen that G(1) = Z(2) x Z(2) suffices. We prove here that G(2) is a group of order 32 and that an upper bound for the order of G(g) is given by g(2g+1). The previously known upper bound was greater than 2(g22g).
引用
收藏
页码:1029 / 1036
页数:8
相关论文
共 50 条
  • [1] Word maps in finite simple groups
    Cocke, William
    Ho, Meng-Che
    ARCHIV DER MATHEMATIK, 2019, 113 (06) : 565 - 570
  • [2] Word maps in finite simple groups
    William Cocke
    Meng-Che Ho
    Archiv der Mathematik, 2019, 113 : 565 - 570
  • [3] Finite presentations of adelic groups, the congruence kernel and cohomology of finite simple groups
    Lubotzky, Alexander
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 241 - 256
  • [4] IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS
    Lubotzky, Alexander
    GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (02) : 465 - 469
  • [5] FINITE CLASSICAL-GROUPS AND MULTIPLICATION GROUPS OF LOOPS
    VESANEN, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 : 425 - 429
  • [6] On dicyclic groups as inner mapping groups of finite loops
    Leppala, Emma
    Niemenmaa, Markku
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (04): : 549 - 553
  • [7] Finite simple automorphism groups of edge-transitive maps
    Jones, Gareth A.
    JOURNAL OF ALGEBRA, 2022, 607 : 454 - 472
  • [8] Finite Groups Isospectral to Simple Groups
    Grechkoseeva, Maria A.
    Mazurov, Victor D.
    Shi, Wujie
    Vasil'ev, Andrey V.
    Yang, Nanying
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) : 169 - 194
  • [9] Groups saturated by finite simple groups
    D. V. Lytkina
    Algebra and Logic, 2009, 48 : 357 - 370
  • [10] Finite Groups Isospectral to Simple Groups
    Maria A. Grechkoseeva
    Victor D. Mazurov
    Wujie Shi
    Andrey V. Vasil’ev
    Nanying Yang
    Communications in Mathematics and Statistics, 2023, 11 : 169 - 194