Effective hopping in holographic Bose and Fermi-Hubbard models

被引:4
|
作者
Fujita, Mitsutoshi [1 ]
Meyer, Rene [2 ]
Pujari, Sumiran [3 ,4 ]
Tezuka, Masaki [5 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Astron, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[3] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[4] Indian Inst Technol, Dept Phys, Bombay 400076, Maharastra, India
[5] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
关键词
Gauge-gravity correspondence; Holography and condensed matter physics (AdS; CMT); TRANSITION;
D O I
10.1007/JHEP01(2019)045
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we analyze a proposed gravity dual to a SU(N) Bose-Hubbard model, as well as construct a holographic dual of a SU(N) Fermi-Hubbard model from D-branes in string theory. In both cases, the SU(N) is dynamical, i.e. the hopping degrees of freedom are strongly coupled to SU(N) gauge bosons which themselves are strongly interacting. The vacuum expectation value (VEV) of the hopping term (i.e. the hopping energy) is analyzed in the gravity dual as a function of the bulk mass of the field dual to the hopping term, as well as of the coupling constants of the model. The bulk mass controls the anomalous dimension (i.e. the critical exponent) of the hopping term in the SU(N) Bose-Hubbard model. We compare the hopping energy to the corresponding result in a numerical simulation of the ungauged SU(N ) Bose-Hubbard model. We find agreement when the hopping parameter is smaller than the other couplings. Our analysis shows that the kinetic energy increases as the bulk mass increases, due to increased contributions from the IR. The holographic Bose-Hubbard model is then compared with the string theory construction of a SU(N) Fermi-Hubbard model. The string theory construction makes it possible to describe fluctuations around a half-filled state in the supergravity limit, which map to O<occupation number fluctuations in the Fermi-Hubbard model at half filling. Finally, the VEV of the Bose-Hubbard model is shown to agree with the one of the fermionic Hubbard model with the help of a two-site version of the Jordan-Wigner transformation.
引用
收藏
页数:50
相关论文
共 50 条
  • [21] Interaction-enhanced nesting in spin-fermion and Fermi-Hubbard models
    Rossi, R.
    Simkovic IV, F.
    Ferrero, M.
    Georges, A.
    Tsvelik, A. M.
    Prokof'ev, N., V
    Tupitsyn, I. S.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [22] Floquet Dynamics in Driven Fermi-Hubbard Systems
    Messer, Michael
    Sandholzer, Kilian
    Gorg, Frederik
    Minguzzi, Joaquin
    Desbuquois, Remi
    Esslinger, Tilman
    PHYSICAL REVIEW LETTERS, 2018, 121 (23)
  • [23] Imaging magnetic polarons in the doped Fermi-Hubbard model
    Koepsell, Joannis
    Vijayan, Jayadev
    Sompet, Pimonpan
    Grusdt, Fabian
    Hilker, Timon A.
    Demler, Eugene
    Salomon, Guillaume
    Bloch, Immanuel
    Gross, Christian
    NATURE, 2019, 572 (7769) : 358 - +
  • [24] Adequacy of Si:P chains as Fermi-Hubbard simulators
    Dusko, Amintor
    Delgado, Alain
    Saraiva, Andre
    Koiller, Belita
    NPJ QUANTUM INFORMATION, 2018, 4
  • [25] Dynamical quasicondensation in the weakly interacting Fermi-Hubbard model
    Brezinova, Iva
    Stimpfle, Markus
    Donsa, Stefan
    Rubio, Angel
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [26] Classically efficient quantum scalable Fermi-Hubbard benchmark
    Gard, Bryan T.
    Meier, Adam M.
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [27] Trotter error with commutator scaling for the Fermi-Hubbard model
    Schubert, Ansgar
    Mendl, Christian B.
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [28] Universal thermodynamics of an SU(N) Fermi-Hubbard model
    Ibarra-Garcia-Padilla, Eduardo
    Dasgupta, Sohail
    Wei, Hao-Tian
    Taie, Shintaro
    Takahashi, Yoshiro
    Scalettar, Richard T.
    Hazzard, Kaden R. A.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [29] Topological stripe state in an extended Fermi-Hubbard model
    Julia-Farre, Sergi
    Cardarelli, Lorenzo
    Lewenstein, Maciej
    Miller, Markus
    Dauphin, Alexandre
    PHYSICAL REVIEW B, 2024, 109 (07)
  • [30] Quantum adiabatic doping for atomic Fermi-Hubbard quantum
    Nan, Jue
    Lin, Jian
    Luo, Yuchen
    Zhao, Bo
    Li, Xiaopeng
    PHYSICAL REVIEW A, 2021, 103 (04)