Unsupervised network traffic anomaly detection with deep autoencoders

被引:7
|
作者
Dutta, Vibekananda [1 ,2 ]
Pawlicki, Marek [1 ]
Kozik, Rafal [1 ]
Choras, Michal [1 ]
机构
[1] Bydgoszcz Univ Sci & Technol, Inst Telecommun & Comp Sci, Al Prof Sylwestra Kaliskiego 7, PL-85976 Bydgoszcz, Poland
[2] Warsaw Univ Technol, Inst Micromech & Photon, Sw Andrzeja Boboli 8-507, PL-02525 Warsaw, Poland
关键词
Machine learning; deep learning; cybersecurity; intrusion detection system; autoencoder; deep neural network; INTRUSION DETECTION SYSTEM; MACHINE; ENSEMBLE; ATTACKS;
D O I
10.1093/jigpal/jzac002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Contemporary Artificial Intelligence methods, especially their subset-deep learning, are finding their way to successful implementations in the detection and classification of intrusions at the network level. This paper presents an intrusion detection mechanism that leverages Deep AutoEncoder and several Deep Decoders for unsupervised classification. This work incorporates multiple network topology setups for comparative studies. The efficiency of the proposed topologies is validated on two established benchmark datasets: UNSW-NB15 and NetML-2020. The results of their analysis are discussed in terms of classification accuracy, detection rate, false-positive rate, negative predictive value, Matthews correlation coefficient and F1-score. Furthermore, comparing against the state-of-the-art methods used for network intrusion detection is also disclosed.
引用
收藏
页码:912 / 925
页数:14
相关论文
共 50 条
  • [41] Spectrum Anomaly Detection for Optical Network Monitoring Using Deep Unsupervised Learning
    Natalino, Carlos
    Udalcovs, Aleksejs
    Wosinska, Lena
    Ozolins, Oskars
    Furdek, Marija
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) : 1583 - 1586
  • [42] Combining Unsupervised Approaches for Near Real-Time Network Traffic Anomaly Detection
    Carrera, Francesco
    Dentamaro, Vincenzo
    Galantucci, Stefano
    Iannacone, Andrea
    Impedovo, Donato
    Pirlo, Giuseppe
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [43] Network Traffic Anomaly Detection Method Based on Deep Features Learning
    Dong Shuqin
    Zhang Bin
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (03) : 695 - 703
  • [44] Network Traffic Anomaly Detection Method Based on Deep Features Learning
    Dong S.
    Zhang B.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2020, 42 (03): : 695 - 703
  • [45] Network Traffic Anomaly Detection Based on Information Gain and Deep Learning
    Lu, Xianglin
    Liu, Pengju
    Lin, Jiayi
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2019), 2019, : 11 - 15
  • [46] Malignant Microcalcification Clusters Detection using Unsupervised Deep Autoencoders
    Hou, Rui
    Ren, Yinhao
    Grimm, Lars J.
    Mazurowski, Maciej A.
    Marks, Jeffrey R.
    King, Lorraine
    Maley, Carlo C.
    Hwang, E. Shelley
    Lo, Joseph Y.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [47] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Principi, Emanuele
    Rossetti, Damiano
    Squartini, Stefano
    Piazza, Francesco
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 441 - 451
  • [48] Unsupervised Deep Anomaly Detection in Chest Radiographs
    Takahiro Nakao
    Shouhei Hanaoka
    Yukihiro Nomura
    Masaki Murata
    Tomomi Takenaga
    Soichiro Miki
    Takeyuki Watadani
    Takeharu Yoshikawa
    Naoto Hayashi
    Osamu Abe
    Journal of Digital Imaging, 2021, 34 : 418 - 427
  • [49] Unsupervised Phase Discovery with Deep Anomaly Detection
    Kottmann, Korbinian
    Huembeli, Patrick
    Lewenstein, Maciej
    Acin, Antonio
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)
  • [50] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Emanuele Principi
    Damiano Rossetti
    Stefano Squartini
    Francesco Piazza
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (02) : 441 - 451