Representations of the cyclically symmetric q-deformed algebra Uq(so3)

被引:1
|
作者
Havlícek, M [1 ]
Posta, S
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, CZ-12000 Prague 2, Czech Republic
[2] Inst Theoret Phys, UA-252143 Kiev, Ukraine
关键词
D O I
10.1023/A:1021692803323
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An algebra homomorphism psi from the nonstandard q-deformed (cyclically symmetric) algebra U-q(so(3)) to the extension (U) over cap(q)(sl(2)) of the Hopf algebra U-q(sl(2)) is constructed. Not all irreducible representations (IR) of U-q(sl(2)) can be extended to representations of (U) over cap(q)(sl(2)). Composing the homomorphism psi with irreducible representations of (U) over cap(q)(sl(2)), we obtain representations of U-q(so(3)). Not all of these representations of U-q(so(3)) are irreducible. Reducible representations of U-q(so(3)) are decomposed into irreducible components. In this way we obtain all IR of U-g(so(3)) when q is not a root of unity. A part of these representations turn into IR of the Lie algebra sos when g --> 1.
引用
收藏
页码:1347 / 1353
页数:7
相关论文
共 50 条
  • [31] q-Deformed Euclidean algebras and their representations
    Groza, VA
    Kachurik, II
    Klimyk, AU
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 103 (03) : 706 - 712
  • [32] Symmetric q-Deformed KP Hierarchy
    Tian, Kelei
    He, Jingsong
    Su, Yucai
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (01) : 1 - 10
  • [33] Symmetric q-deformed KP hierarchy
    Kelei Tian
    Jingsong He
    Yucai Su
    Chinese Annals of Mathematics, Series B, 2015, 36 : 1 - 10
  • [34] The embedding Uq′(so3) ⊂ Uq(sl3)
    Kachurik, II
    Klimyk, AU
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (04): : 793 - 805
  • [35] Connection of a q-deformed algebra and a classical algebra with q a root of unity
    Kim, HJ
    Chung, WS
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 (03) : 275 - 278
  • [36] Symmetric q-Deformed KP Hierarchy
    Kelei TIAN
    Jingsong HE
    Yucai SU
    Chinese Annals of Mathematics(Series B), 2015, 36 (01) : 1 - 10
  • [37] DYNAMIC ALGEBRA OF THE Q-DEFORMED 3-DIMENSIONAL OSCILLATOR
    VANDERJEUGT, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (05) : 1799 - 1806
  • [38] Center of quantum algebra U′q(so3)
    Havlicek, Miloslav
    Posta, Severin
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [39] 6 GENERATOR Q-DEFORMED LORENTZ ALGEBRA
    OGIEVETSKY, O
    SCHMIDKE, WB
    WESS, J
    ZUMINO, B
    LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (03) : 233 - 240
  • [40] Unitary representations of Uq (sl(2,R)), the modular double and the multiparticle q-deformed toda chains
    Kharchev, S
    Lebedev, D
    Semenov-Tian-Shansky, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (03) : 573 - 609