DADA: Depth-Aware Domain Adaptation in Semantic Segmentation

被引:105
|
作者
Vu, Tuan-Hung [1 ]
Jain, Himalaya [1 ]
Bucher, Maxime [1 ]
Cord, Matthieu [1 ,2 ]
Perez, Patrick [1 ]
机构
[1] Valeo Ai, Paris, France
[2] Sorbonne Univ, Paris, France
关键词
D O I
10.1109/ICCV.2019.00746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) is important for applications where large scale annotation of representative data is challenging. For semantic segmentation in particular, it helps deploy, on real "target domain" data, models that are trained on annotated images from a different "source domain", notably a virtual environment. To this end, most previous works consider semantic segmentation as the only mode of supervision for source domain data, while ignoring other, possibly available, information like depth. In this work, we aim at exploiting at best such a privileged information while training the UDA model. We propose a unified depth-aware UDA framework that leverages in several complementary ways the knowledge of dense depth in the source domain. As a result, the performance of the trained semantic segmentation model on the target domain is boosted. Our novel approach indeed achieves state-of-the-art performance on different challenging synthetic-2-real benchmarks. Code and models are available at https://github.com/ valeoai/DADA.
引用
收藏
页码:7363 / 7372
页数:10
相关论文
共 50 条
  • [41] DADA: Distribution-Aware Domain Adaptation of PLMs for Information Retrieval
    Lee, Dohyeon
    Kim, Jongyoon
    Hwang, Seung-won
    Park, Joonsuk
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 13882 - 13893
  • [42] Efficient Unet with depth-aware gated fusion for automatic skin lesion segmentation
    Ding, Xiangwen
    Wang, Shengsheng
    Journal of Intelligent and Fuzzy Systems, 2021, 40 (05): : 9963 - 9975
  • [43] Efficient Unet with depth-aware gated fusion for automatic skin lesion segmentation
    Ding, Xiangwen
    Wang, Shengsheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9963 - 9975
  • [44] Semantic-Aware Domain Generalized Segmentation
    Peng, Duo
    Lei, Yinjie
    Hayat, Munawar
    Guo, Yulan
    Li, Wen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2584 - 2595
  • [45] Depth-Aware Image Colorization Network
    Chu, Wei-Ta
    Hsu, Yu-Ting
    PROCEEDINGS OF THE 2018 WORKSHOP ON UNDERSTANDING SUBJECTIVE ATTRIBUTES OF DATA, WITH THE FOCUS ON EVOKED EMOTIONS (EE-USAD'18), 2018, : 17 - 23
  • [46] Depth-aware image vectorization and editing
    Shufang Lu
    Wei Jiang
    Xuefeng Ding
    Craig S. Kaplan
    Xiaogang Jin
    Fei Gao
    Jiazhou Chen
    The Visual Computer, 2019, 35 : 1027 - 1039
  • [47] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [48] Depth-Aware Endoscopic Video Inpainting
    Zhang, Francis Xiatian
    Chen, Shuang
    Xie, Xianghua
    Shum, Hubert P. H.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VI, 2024, 15006 : 143 - 153
  • [49] MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation
    Petrovai, Andra
    Nedevschi, Sergiu
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3076 - 3085
  • [50] Depth-aware image vectorization and editing
    Lu, Shufang
    Jiang, Wei
    Ding, Xuefeng
    Kaplan, Craig S.
    Jin, Xiaogang
    Gao, Fei
    Chen, Jiazhou
    VISUAL COMPUTER, 2019, 35 (6-8): : 1027 - 1039