The T helper (Th) cell subsets are characterized by the type of cytokines produced and the master transcription factor expressed. Th1 cells participate in cell-mediated immunity, whereas Th2 cells promote humoral immunity. Furthermore, the two subsets can control each other. Thereby, Th1-Th2 balance offered a key paradigm in understanding the induction and regulation of immune pathology in autoimmune and other diseases. However, over the past decade, Th17 cells producing interleukin-17 (IL-17) have emerged as the major pathogenic T cell subset in many pathological conditions that were previously attributed to Th1 cells. In addition, the role of CD4 + CD25 + T regulatory cells (Treg) in controlling the activity of Th17 and other T cell subsets has increasingly been realized. Thereby, examination of the Th17/Treg balance in the course of autoimmune diseases has significantly advanced our understanding of the pathogenesis of these disorders. The differentiation of Th17 and Treg cells from naive T cells is inter-related and controlled in part by the cytokine milieu. For example, transforming growth factor beta (TGF beta) is required for Treg induction, whereas the same cytokine in the presence of IL-6 (or IL-1) promotes the differentiation of Th17. Furthermore, IL-23 plays a role in the maintenance of Th17. Accordingly, novel therapeutic approaches are being developed to target IL-23/IL-17 as well as to modulate the Th17/Treg balance in favor of immune regulation to control autoimmunity. (C) 2014 Elsevier Ltd. All rights reserved.