Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

被引:7
|
作者
McCarthy, Jillian [1 ]
Borroni, Barbara [2 ]
Sanchez-Valle, Raquel [3 ]
Moreno, Fermin [4 ,5 ]
Laforce, Robert, Jr. [6 ,7 ]
Graff, Caroline [8 ,9 ]
Synofzik, Matthis [10 ,11 ,12 ]
Galimberti, Daniela [13 ,14 ]
Rowe, James B. [15 ,16 ]
Masellis, Mario [17 ]
Tartaglia, Maria Carmela [18 ]
Finger, Elizabeth [19 ]
Vandenberghe, Rik [20 ,21 ,22 ]
de Mendonca, Alexandre [23 ]
Tagliavini, Fabrizio [24 ]
Santana, Isabel [25 ,26 ]
Butler, Chris [27 ,28 ]
Gerhard, Alex [29 ,30 ,31 ]
Danek, Adrian [32 ]
Levin, Johannes [32 ,33 ,34 ]
Otto, Markus [35 ]
Frisoni, Giovanni [36 ,37 ,38 ,39 ]
Ghidoni, Roberta [40 ]
Sorbi, Sandro [41 ,42 ]
Jiskoot, Lize C. [43 ]
Seelaar, Harro [43 ]
van Swieten, John C. [43 ]
Rohrer, Jonathan D. [44 ]
Iturria-Medina, Yasser [1 ,45 ,46 ]
Ducharme, Simon [1 ,47 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Univ Brescia, Dept Clin & Expt Sci, Ctr Neurodegenerat Disorders, Brescia, Italy
[3] Univ Barcelona, Alzheimers Dis & Other Cognit Disorders Unit, Inst Invest Biomed August Pi & Sunyer, Hosp Clin,Neurol Serv, Barcelona, Spain
[4] Donostia Univ Hosp, Dept Neurol, Cognit Disorders Unit, San Sebastian, Spain
[5] Biodonostia Hlth Res Inst, Neurosci Area, San Sebastian, Spain
[6] Univ Laval, CHU Quebec, Dept Sci Neurol, Clin Interdisciplinaire Memoire, Quebec City, PQ, Canada
[7] Univ Laval, Fac Med, Quebec City, PQ, Canada
[8] Karolinska Univ Hosp Huddinge, Dept Geriatr Med, Stockholm, Sweden
[9] Karolinska Univ Hosp, Unit Hereditary Dementias, Theme Aging, Solna, Sweden
[10] Univ Tubingen, Dept Neurodegenerat Dis, Hertie Inst Clin Brain Res, Tubingen, Germany
[11] Univ Tubingen, Ctr Neurol, Tubingen, Germany
[12] Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[13] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Neurodegenerat Dis Unit, Milan, Italy
[14] Univ Milan, Dino Ferrari Ctr, Dept Biomed Surg & Dent Sci, Milan, Italy
[15] Univ Cambridge, Cambridge Univ Hosp NHS Trust, Dept Clin Neurosci, Cambridge, England
[16] RC Cognit & Brain Sci Unit, Cambridge, England
[17] Univ Toronto, Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[18] Toronto Western Hosp, Tanz Ctr Res Neurodegenerat Dis, Toronto, ON, Canada
[19] Univ Western Ontario, Dept Clin Neurol Sci, London, ON, Canada
[20] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Leuven, Belgium
[21] Univ Hosp Leuven, Neurol Serv, Leuven, Belgium
[22] Katholieke Univ Leuven, Leuven Brain Inst, Leuven, Belgium
[23] Univ Lisbon, Fac Med, Lisbon, Portugal
[24] Fdn Ist Ricovero & Cura Carattere Sci, Ist Neurol Carlo Besta, Milan, Italy
[25] Ctr Hosp & Univ Coimbra, Neurol Dept, Coimbra, Portugal
[26] Univ Coimbra, Ctr Neurosci & Cell Biol, Fac Med, Coimbra, Portugal
[27] Univ Oxford, Dept Clin Neurol, Oxford, England
[28] Imperial Coll London, Dept Brain Sci, London, England
[29] Univ Manchester, Div Neurosci & Expt Psychol, Fac Med Biol & Hlth, Manchester, Lancs, England
[30] Essen Univ Hosp, Dept Geriatr Med, Essen, Germany
[31] Essen Univ Hosp, Dept Nucl Med, Essen, Germany
[32] Ludwig Maximilians Univ Munchen, Munich, Germany
[33] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[34] Munich Cluster Syst Neurol SyNergy, Munich, Germany
[35] Univ Hosp Ulm, Dept Neurol, Ulm, Germany
[36] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, LANE Lab Alzheimers Neuroimaging & Epidemiol, Brescia, Italy
[37] Univ Hosp, Memory Clin, Geneva, Switzerland
[38] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[39] Univ Geneva, Geneva, Switzerland
[40] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Mol Markers Lab, Brescia, Italy
[41] Univ Florence, Dept Neurofarba, Florence, Italy
[42] IRCCS Fdn Don Carlo Gnocchi, Florence, Italy
[43] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[44] UCL Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[45] McGill Univ, Montreal Neurol Inst, Neurol & Neurosurg Dept, Montreal, PQ, Canada
[46] McGill Univ, Ludmer Ctr Neuroinformat & Mental Hlth, Montreal, PQ, Canada
[47] McGill Univ, Douglas Mental Hlth Univ Inst, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大创新基金会;
关键词
disease progression; frontotemporal dementia; magnetic resonance imaging; unsupervised machine learning; NEUROFILAMENT LIGHT-CHAIN; GRAY-MATTER ATROPHY; BEHAVIORAL VARIANT; CLINICAL-TRIALS; DIFFUSION; HARMONIZATION; DEGENERATION; BIOMARKER; CRITERIA; GENFI;
D O I
10.1002/hbm.25727
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
引用
收藏
页码:1821 / 1835
页数:15
相关论文
共 50 条
  • [21] Multi-modal man-machine data-driven service design for check-in experience
    Lu W.
    Jiang G.
    Xue Y.
    Guo Q.
    Tian W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (03): : 907 - 917
  • [22] Water Advisor - A Data-Driven, Multi-Modal, Contextual Assistant to Help With Water Usage Decisions
    Ellis, Jason
    Srivastava, Biplav
    Bellamy, Rachel K. E.
    Aaron, Andy
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8198 - 8199
  • [23] A novel solution for data uncertainty and insufficient in data-driven chiller fault diagnosis based on multi-modal data fusion
    You, Yuwen
    Zhao, Yuan
    Ke, Yan
    Tang, Junhao
    Yang, Bin
    ENERGY AND BUILDINGS, 2025, 328
  • [24] Data-Driven Spatio-Temporal Analysis via Multi-Modal Zeitgebers and Cognitive Load in VR
    Liao, Haodong
    Xie, Ning
    Li, Huiyuan
    Li, Yuhang
    Su, Jianping
    Jiang, Feng
    Huang, Weipeng
    Shen, Heng Tao
    2020 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES (VR 2020), 2020, : 473 - 482
  • [25] A Data-Driven Approach for the Localization of Interacting Agents via a Multi-Modal Dynamic Bayesian Network Framework
    Shiferaw Alemaw, Abrham
    Slavic, Giulia
    Iqbal, Hafsa
    Marcenaro, Lucio
    Martin Gomez, David
    Regazzoni, Carlo
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [26] Design and Implementation of Multi-modal Data-driven Verification Platform for Municipal Solid Waste Incineration Process
    Wang T.
    Tang J.
    Xia H.
    Pan X.
    Qiao J.
    Liu X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (12): : 4697 - 4707
  • [27] Impact of MRI markers in subcortical vascular dementia: A multi-modal analysis in CADASIL
    Viswanathan, Anand
    Godin, Ophelia
    Jouvent, Eric
    O'Sullivan, Michael
    Gschwendtner, Andreas
    Peters, Nils
    Duering, Marco
    Guichard, Jean-Pierre
    Holtmannspoetter, Markus
    Dufouil, Carole
    Pachai, Chahin
    Bousser, Marie-Germaine
    Dichgans, Martin
    Chabriat, Hugues
    NEUROBIOLOGY OF AGING, 2010, 31 (09) : 1629 - 1636
  • [28] Determination of an infill well placement using a data-driven multi-modal convolutional neural network (vol 195, 106805, 2020)
    Chu, Min-gon
    Min, Baehyun
    Kwon, Seoyoon
    Park, Gayoung
    Kim, Sungil
    Huy, Nguyen Xuan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 206
  • [29] SEPARATION OF FETAL AND MATERNAL CIRCULATIONS USING MULTI-MODAL MRI
    Melbourne, Andrew
    Pratt, Rosalind
    Sokolska, Magdalena
    Owen, David
    Bainbridge, Alan
    Atkinson, David
    Kendall, Giles
    Deprest, Jan
    Vercauteren, Tom
    David, Anna
    Ourselin, Sebastien
    PLACENTA, 2017, 57 : 291 - 291
  • [30] A Self-supervised Framework for Improved Data-Driven Monitoring of Stress via Multi-modal Passive Sensing
    Fazeli, Shayan
    Levine, Lionel
    Beikzadeh, Mehrab
    Mirzasoleiman, Baharan
    Zadeh, Bita
    Peris, Tara
    Sarrafzadeh, Majid
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 177 - 183