On the Ramsey number of sparse 3-graphs

被引:17
|
作者
Nagle, Brendan [2 ]
Olsen, Sayaka [3 ]
Roedl, Vojtech [4 ]
Schacht, Mathias [1 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[2] Univ S Florida, Dept Math, Tampa, FL 33620 USA
[3] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[4] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Ramsey theory; hypergraphs; Burr-Erdos conjecture;
D O I
10.1007/s00373-008-0784-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a hypergraph generalization of a conjecture of Burr and Erdos concerning the Ramsey number of graphs with bounded degree. It was shown by Chvatal, Rodl, Trotter, and Szemeredi [The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), no. 3, 239-243] that the Ramsey number R(G) of a graph G of bounded maximum degree is linear in vertical bar V(G)vertical bar. We derive the analogous result for 3-uniform hypergraphs.
引用
收藏
页码:205 / 228
页数:24
相关论文
共 50 条
  • [41] Turan H-densities for 3-graphs
    Ravry, Victor Falgas
    Vaughan, Emil R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [42] A TURAN-TYPE PROBLEM ON 3-GRAPHS
    ZHOU, B
    ARS COMBINATORIA, 1991, 31 : 177 - 181
  • [43] SIZE RAMSEY NUMBER OF BIPARTITE GRAPHS AND BIPARTITE RAMANUJAN GRAPHS
    Javadi, R.
    Khoeini, F.
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 45 - 51
  • [44] Triangle-degrees in graphs and tetrahedron coverings in 3-graphs
    Falgas-Ravry, Victor
    Markstrom, Klas
    Zhao, Yi
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 175 - 199
  • [45] Ryser's conjecture for tripartite 3-graphs
    Aharoni, R
    COMBINATORICA, 2001, 21 (01) : 1 - 4
  • [46] Hamiltonicity in Cherry-quasirandom 3-graphs
    Gan, Luyining
    Han, Jie
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [47] A note on the Ramsey number of stars - Complete graphs
    Omidi, G. R.
    Raeisi, G.
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (04) : 598 - 599
  • [48] On the size-Ramsey number of grid graphs
    Clemens, Dennis
    Miralaei, Meysam
    Reding, Damian
    Schacht, Mathias
    Taraz, Anusch
    COMBINATORICS PROBABILITY AND COMPUTING, 2021, 30 (05) : 670 - 685
  • [49] ANTI-RAMSEY NUMBER OF HANOI GRAPHS
    Gorgol, Izolda
    Lechowska, Anna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 285 - 296
  • [50] Anti-Ramsey Threshold of Cycles for Sparse Graphs
    Barros, G. F.
    Cavalar, B. P.
    Mota, G. O.
    Parczyk, O.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 89 - 98