Automated post-operative brain tumour segmentation: A deep learning model based on transfer learning from pre-operative images

被引:26
|
作者
Ghaffari, Mina [1 ,2 ]
Samarasinghe, Gihan [2 ,3 ]
Jameson, Michael [3 ]
Aly, Farhannah [3 ,4 ,5 ]
Holloway, Lois [3 ,4 ,5 ]
Chlap, Phillip [2 ,3 ]
Koh, Eng-Siew [3 ,4 ,5 ]
Sowmya, Arcot [2 ]
Oliver, Ruth [1 ]
机构
[1] Macquarie Univ, Engn Sch, Sydney, NSW 2109, Australia
[2] Univ New South Wales, Sch Comp Sci & Engn, Barker St, Kensington, NSW 2052, Australia
[3] Ingham Inst Appl Med Res, 1 Campbell St, Liverpool, NSW 2170, Australia
[4] Liverpool & Macarthur Canc Therapy Ctr, Therry Rd, Campbelltown, NSW 2560, Australia
[5] UNSW, South Western Clin Sch, Liverpool Hosp Locked Bag 7103, Liverpool Bc, NSW 1871, Australia
关键词
Brain tumour segmentation; Multimodal MRI; Deep learning; Densely connected CNN;
D O I
10.1016/j.mri.2021.10.012
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Automated brain tumour segmentation from post-operative images is a clinically relevant yet challenging problem. In this study, an automated method for segmenting brain tumour into its subregions has been developed. The dataset consists of multimodal post-operative brain scans (T1 MRI, post-Gadolinium T1 MRI, and T2FLAIR images) of 15 patients who were treated with post-operative radiation therapy, along with manual annotations of their tumour subregions. A 3D densely-connected U-net was developed for segmentation of brain tumour regions and extensive experiments were conducted to enhance model accuracy. A model was initially developed using the publicly available BraTS dataset consisting of pre-operative brain scans. This model achieved Dice Scores of 0.90, 0.83 and 0.78 for predicting whole tumour, tumour core, and enhancing tumour subregions when tested on BraTS20 blind validation dataset. The acquired knowledge from BraTS was then transferred to the local dataset. For augmentation purpose, the local dataset was registered to a dataset of MRI brain scans of healthy subjects. To improve the robustness of the model and enhance its accuracy, ensemble learning was used to combine the outputs of all the trained models. Even though the size of the dataset is very small, the final model can segment brain tumours with a high Dice Score of 0.83, 0.77 and 0.60 for whole tumour, tumour core and enhancing core respectively.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [41] Deep Learning-based Brain Tumour Segmentation
    Ventakasubbu, Pattabiraman
    Ramasubramanian, Parvathi
    IETE JOURNAL OF RESEARCH, 2023, 69 (06) : 3156 - 3164
  • [42] Target delineation in post-operative radiotherapy of brain gliomas: Interobserver variability and impact of image registration of MR (pre-operative) images on treatment planning CT scans
    Cattaneo, GM
    Reni, M
    Rizzo, G
    Castellone, P
    Ceresoli, GL
    Cozzarini, C
    Ferreri, AJM
    Passoni, P
    Calandrino, R
    RADIOTHERAPY AND ONCOLOGY, 2005, 75 (02) : 217 - 223
  • [43] Comparing pre-operative versus post-operative single and multi-fraction stereotactic radiotherapy for patients with resectable brain metastases
    Perlow, Haley K.
    Ho, Cindy
    Matsui, Jennifer K.
    Prasad, Rahul N.
    Klamer, Brett G.
    Wang, Joshua
    Damante, Mark
    Upadhyay, Rituraj
    Thomas, Evan
    Blakaj, Dukagjin M.
    Beyer, Sasha
    Lonser, Russell
    Hardesty, Douglas
    Raval, Raju R.
    Prabhu, Roshan
    Elder, James B.
    Palmer, Joshua D.
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2023, 38 : 117 - 122
  • [44] Pre-Operative vs. Post-Operative Fractionated Stereotactic Radiotherapy for Patients with Brain Metastases: A Multi-Institutional Analysis
    Perlow, H. K.
    Ho, C.
    Matsui, J. K.
    Prasad, R. N.
    Klamer, B.
    Wang, J.
    Damante, M.
    Blakaj, D. M.
    Beyer, S.
    Lonser, R. R.
    Hardesty, D.
    Raval, R.
    Prabhu, R. S.
    Elder, J. B.
    Palmer, J. D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : S167 - S168
  • [45] Pre-Operative Versus Post-Operative Radiosurgery of Brain Metastases-Volumetric and Dosimetric Impact of Treatment Sequence and Margin Concept
    El Shafie, Rami A.
    Tonndorf-Martini, Eric
    Schmitt, Daniela
    Weber, Dorothea
    Celik, Aylin
    Dresel, Thorsten
    Bernhardt, Denise
    Lang, Kristin
    Hoegen, Philipp
    Adeberg, Sebastian
    Paul, Angela
    Debus, Juergen
    Rieken, Stefan
    CANCERS, 2019, 11 (03):
  • [46] COMPARING PRE-OPERATIVE PREDICTIONS AND POST-OPERATIVE FONTAN HEMODYNAMIC OUTCOMES: IMPLICATIONS FOR COMPUTER-BASED SURGERY PLANNING
    Haggerty, Christopher M.
    de Zelicourt, Diane A.
    Restrepo, Maria
    Rossignac, Jarek
    Spray, Thomas L.
    Kanter, Kirk R.
    Fogel, Mark A.
    Yoganathan, Ajit P.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 491 - 492
  • [47] Predicting post-operative right ventricular failure using video-based deep learning
    Rohan Shad
    Nicolas Quach
    Robyn Fong
    Patpilai Kasinpila
    Cayley Bowles
    Miguel Castro
    Ashrith Guha
    Erik E. Suarez
    Stefan Jovinge
    Sangjin Lee
    Theodore Boeve
    Myriam Amsallem
    Xiu Tang
    Francois Haddad
    Yasuhiro Shudo
    Y. Joseph Woo
    Jeffrey Teuteberg
    John P. Cunningham
    Curtis P. Langlotz
    William Hiesinger
    Nature Communications, 12
  • [48] Contact position analysis of deep brain stimulation electrodes on post-operative CT images
    Simone Hemm
    Jérôme Coste
    Jean Gabrillargues
    Lemlih Ouchchane
    Laurent Sarry
    François Caire
    François Vassal
    Christophe Nuti
    Philippe Derost
    Franck Durif
    Jean-Jacques Lemaire
    Acta Neurochirurgica, 2009, 151 : 823 - 829
  • [49] Contact position analysis of deep brain stimulation electrodes on post-operative CT images
    Hemm, Simone
    Coste, Jerome
    Gabrillargues, Jean
    Ouchchane, Lemlih
    Sarry, Laurent
    Caire, Francois
    Vassal, Francois
    Nuti, Christophe
    Derost, Philippe
    Durif, Franck
    Lemaire, Jean-Jacques
    ACTA NEUROCHIRURGICA, 2009, 151 (07) : 823 - 829
  • [50] Deep Learning Based Metal Artifacts Reduction in Post-operative Cochlear Implant CT Imaging
    Wang, Zihao
    Vandersteen, Clair
    Demarcy, Thomas
    Gnansia, Dan
    Raffaelli, Charles
    Guevara, Nicolas
    Delingette, Herve
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 121 - 129